4 research outputs found

    In Situ Lignin Sulfonation for Highly Conductive Wood/Polypyrrole Porous Composites

    No full text
    To address the rising need of sustainable solutions in electronic devices, the development of electronically conductive composites based on lightweight but mechanically strong wood structures is highly desirable. Here, a facile approach for the fabrication of highly conductive wood/polypyrrole composites through top-down modification of native lignin followed by polymerization of pyrrole in wood cell wall. By sodium sulfite treatment under neutral condition, sulfonated wood veneers with increased porosity but well-preserved cell wall structure containing native lignin and lignosulfonates are obtained. The wood structure has a content of sulfonic groups up to 343 mu mol g(-1) owing to in situ sulfonated lignin which facilitates subsequent oxidative polymerization of pyrrole, achieving a weight gain of polypyrrole as high as 35 wt%. The lignosulfonates in the wood structure act as dopant and stabilizer for the synthesized polypyrrole. The composite reaches a high conductivity of 186 S m(-1) and a specific pseudocapacitance of 1.71 F cm(-2) at the current density of 8.0 mA cm(-2). These results indicate that tailoring the wood/polymer interface in the cell wall and activating the redox activity of native lignin by sulfonation are important strategies for the fabrication of porous and lightweight wood/conductive polymer composites with potential for sustainable energy applications.Funding Agencies|Wallenberg Wood Science Center - Knut and Alice Wallenberg Foundation</p

    Rationally designed conductive wood with mechanoresponsive electrical resistance

    No full text
    Porous cellular foams, combining lightweight, high strength, and compressibility, hold great promise in a wide range of advanced applications. Here, the native structure of pine wood was modified by in-situ lignin sulfonation and unidirectional freezing, resulting in an alveolate structure inside the wood cell wall with arrays of sub-100 nm channels. The obtained wood foam exhibited highly enhanced permeability while retaining the native cellular arrangement and high lignin and hemicellulose content. Such engineered cellular foam contributed to superior mechanical performance with compressive strength of 9 MPa and Young's modulus of 344 MPa in the longitudinal direction. The high porosity allowed homogeneous infiltration of conductive polymer PEDOT:PSS inside the wood cell wall. The resulting composite exhibited high conductivity, sponge-like compressibility and the ability to modulate electrical resistance in a reversible manner in the radial direction. This rationally designed conductive wood demonstrated potential in durable and ultrasensitive pressure-responsive devices and strain sensors.ISSN:1359-835XISSN:1878-584

    Electrical current modulation in wood electrochemical transistor

    No full text
    The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm−1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.QC 20230713</p

    Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications

    No full text
    Nanostructured wood veneer with added electroactive functionality combines structural and functional properties into eco-friendly, low-cost nanocomposites for electronics and energy technologies. Here, we report novel conducting polymer-impregnated wood veneer electrodes where the native lignin is preserved, but functionalized for redox activity and used as an active component. The resulting electrodes display a well-preserved structure, redox activity, and high conductivity. Wood samples were sodium sulfite-treated under neutral conditions at 165 degrees C, followed by the tailored distribution of PEDOT:PSS, not previously used for this purpose. The mild sulfite process introduces sulfonic acid groups inside the nanostructured cell wall, facilitating electrostatic interaction on a molecular level between the residual lignin and PEDOT. The electrodes exhibit a conductivity of up to 203 S m(-1) and a specific pseudo-capacitance of up to 38 mF cm(-2), with a capacitive contribution from PEDOT:PSS and a faradaic component originating from lignin. We also demonstrate an asymmetric wood pseudo-capacitor reaching a specific capacitance of 22.9 mF cm(-2) at 1.2 mA cm(-2) current density. This new wood composite design and preparation scheme will support the development of wood-based materials for use in electronics and energy storage.Funding Agencies|Wallenberg Wood Science Center (Knut and Alice Wallenberg Foundation); Karl-Erik Onnesjo Foundation; Treesearch, a collaboration platform for Swedish forest industrial research</p
    corecore