627 research outputs found

    Two-spin relaxation of P-dimers in Silicon

    Full text link
    We study two-electron singlet-triplet relaxation of donor-bound electrons in Silicon. Hyperfine interaction of the electrons with the phosphorus (P) nuclei, in combination with the electron-phonon interaction, lead to relaxation of the triplet states. Within the Heitler-London and effective mass approximations, we calculate the triplet relaxation rates in the presence of an applied magnetic field. This relaxation mechanism affects the resonance peaks in current Electron Spin Resonance (ESR) experiments on P-dimers. Moreover, the estimated time scales for the spin decay put an upper bound on the gate pulses needed to perform fault-tolerant two-qubit operations in donor-spin-based quantum computers (QCs).Comment: 3 figures, 1 tabl

    Discharge rate of cryogens in microgravity - What ground based experimentation cannot resolve

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76407/1/AIAA-1991-3545-390.pd

    Transient cryogenic liquid discharge in normal and micro-gravity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76393/1/AIAA-1991-486-786.pd

    Development of a Portable Device for Thermoelectrical Power Measurement—Application to the Inspection of Duplex Stainless Steel Components

    Get PDF
    Some cast components of the primary loop of French Pressurized Water Reactors are made of cast duplex stainless steels. The mechanical characteristics of these components, working in the temperature range from 285°C to 325°C, may be altered by thermal aging : the hardness of the materials increases whereas its toughness decreases with aging time and temperature. The metallurgical explanation of this phenomena is the unmixing of the ferritic Fe-Cr-Ni solid solution by spinodal decomposition and the precipitation of intermetallic G-phase particles rich in nickel and silicium [1]

    Doppler assessment of aortic stenosis: a 25-operator study demonstrating why reading the peak velocity is superior to velocity time integral

    Get PDF
    Aims Measurements with superior reproducibility are useful clinically and research purposes. Previous reproducibility studies of Doppler assessment of aortic stenosis (AS) have compared only a pair of observers and have not explored the mechanism by which disagreement between operators occurs. Using custom-designed software which stored operators’ traces, we investigated the reproducibility of peak and velocity time integral (VTI) measurements across a much larger group of operators and explored the mechanisms by which disagreement arose. Methods and results Twenty-five observers reviewed continuous wave (CW) aortic valve (AV) and pulsed wave (PW) left ventricular outflow tract (LVOT) Doppler traces from 20 sequential cases of AS in random order. Each operator unknowingly measured each peak velocity and VTI twice. VTI tracings were stored for comparison. Measuring the peak is much more reproducible than VTI for both PW (coefficient of variation 10.1 vs. 18.0%; P < 0.001) and CW traces (coefficient of variation 4.0 vs. 10.2%; P < 0.001). VTI is inferior because the steep early and late parts of the envelope are difficult to trace reproducibly. Dimensionless index improves reproducibility because operators tended to consistently over-read or under-read on LVOT and AV traces from the same patient (coefficient of variation 9.3 vs. 17.1%; P < 0.001). Conclusion It is far more reproducible to measure the peak of a Doppler trace than the VTI, a strategy that reduces measurement variance by approximately six-fold. Peak measurements are superior to VTI because tracing the steep slopes in the early and late part of the VTI envelope is difficult to achieve reproducibly

    Proposal for a standard problem for micromagnetic simulations including spin-transfer torque

    No full text
    The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is of fundamental interest for the applied physics community. To investigate the spin-transfer torque, powerful simulation tools are mandatory. We propose a micromagnetic standard problem includingthe spin-transfer torque that can be used for the validation and falsication of micromagnetic simulation tools. The work is based on the micromagnetic model extended by the spin-transfer torque in continuously varying magnetizations as proposed by Zhang and Li. The standard problem geometry is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a Landau pattern with a vortex in the center of the structure. A spin-polarized dc current density of 1012 A/m2 flows laterally through the cuboid and moves the vortex core to a new steady-state position. We show that the new vortex-core position is a sensitive measure for the correctness of micromagnetic simulatorsthat include the spin-transfer torque. The suitability of the proposed problem as a standard problem is tested by numerical results from four different finite-difference and finite-element-based simulation tools

    Tuning a Circular p-n Junction in Graphene from Quantum Confinement to Optical Guiding

    Full text link
    The motion of massless Dirac-electrons in graphene mimics the propagation of photons. This makes it possible to control the charge-carriers with components based on geometrical-optics and has led to proposals for an all-graphene electron-optics platform. An open question arising from the possibility of reducing the component-size to the nanometer-scale is how to access and understand the transition from optical-transport to quantum-confinement. Here we report on the realization of a circular p-n junction that can be continuously tuned from the nanometer-scale, where quantum effects are dominant, to the micrometer scale where optical-guiding takes over. We find that in the nanometer-scale junction electrons are trapped in states that resemble atomic-collapse at a supercritical charge. As the junction-size increases, the transition to optical-guiding is signaled by the emergence of whispering-gallery modes and Fabry-Perot interference. The creation of tunable junctions that straddle the crossover between quantum-confinement and optical-guiding, paves the way to novel design-architectures for controlling electronic transport.Comment: 16 pages, 4 figure

    Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies

    Get PDF
    The Regional Climate Model Evaluation System (RCMES) is an enabling tool of the National Aeronautics and Space Administration to support the United States National Climate Assessment. As a comprehensive system for evaluating climate models on regional and continental scales using observational datasets from a variety of sources, RCMES is designed to yield information on the performance of climate models and guide their improvement. Here, we present a user-oriented document describing the latest version of RCMES, its development process, and future plans for improvements. The main objective of RCMES is to facilitate the climate model evaluation process at regional scales. RCMES provides a framework for performing systematic evaluations of climate simulations, such as those from the Coordinated Regional Climate Downscaling Experiment (CORDEX), using in situ observations, as well as satellite and reanalysis data products. The main components of RCMES are (1) a database of observations widely used for climate model evaluation, (2) various data loaders to import climate models and observations on local file systems and Earth System Grid Federation (ESGF) nodes, (3) a versatile processor to subset and regrid the loaded datasets, (4) performance metrics designed to assess and quantify model skill, (5) plotting routines to visualize the performance metrics, (6) a toolkit for statistically downscaling climate model simulations, and (7) two installation packages to maximize convenience of users without Python skills. RCMES website is maintained up to date with a brief explanation of these components. Although there are other open-source software (OSS) toolkits that facilitate analysis and evaluation of climate models, there is a need for climate scientists to participate in the development and customization of OSS to study regional climate change. To establish infrastructure and to ensure software sustainability, development of RCMES is an open, publicly accessible process enabled by leveraging the Apache Software Foundation's OSS library, Apache Open Climate Workbench (OCW). The OCW software that powers RCMES includes a Python OSS library for common climate model evaluation tasks as well as a set of user-friendly interfaces for quickly configuring a model evaluation task. OCW also allows users to build their own climate data analysis tools, such as the statistical downscaling toolkit provided as a part of RCMES.</p

    Bis 4,5-diazafluoren-9-one silver(I) nitrate: synthesis, X-ray structures, solution chemistry, hydrogel loading, DNA coupling and anti-bacterial screening

    Get PDF
    Synthesis of bis-4,5-diazafluoren-9-one silver(I) nitrate I (dafone = 4,5-diazafluoren-9-one) and the low temperature X-ray single crystal structure of [Ag(4,5-diazafluoren-9-one)<sub>2</sub>NO<sub>3</sub>], crystal form 1, and a re-determination of [Ag(4,5-diazafluoren-9-one)<sub>2</sub>]NO<sub>3</sub> . H<sub>2</sub>O, crystal form 2 are presented. Crystal form 1 has a distorted trigonal planar coordination geometry around Ag(I) with an N-Ag-N bond angle of 123.45(7)<sup>o</sup>. Crystal form 2 has a perfect linear coordination around Ag, with N-Ag-N 180.0<sup>o</sup>. Compound I was characterized by <sup>1</sup>H-NMR, biological activity and ESI-MS in DMSO at room temperature. The biological activity was determined against 6 different resistant clinical isolates; two Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and four Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Salmonella sp.) in comparison with 15 known antibiotics used in the treatment of diabetic foot infections. Compound I showed broad spectrum activity against all the test organisms. P. mirabilis and S. aureus and K. pneumoniae were the most sensitive clinical isolates (MIC = 4, 6 and 4 &mu;g ml<sup>-1</sup>, respectively). Three different hydrogels containing I or Ag<sub>2</sub>SO<sub>4</sub> were prepared and the antimicrobial activity against Ps. aeruginosa (ATCC 15442) compared, showing more or less equal activity on a weight basis, but I seems to have a significant better performance per silver ion. The Ag(I) complex also binds more effectively to calf thymus DNA than the dafone ligand itself
    • …
    corecore