1,167 research outputs found
Test Bench Of The Barrel Calorimeter Modules
A systematic procedure to qualify the barrel calorimeter modules is an essential step to guarantee a 0.7% constant term, which is the collaboration objective. The procedure detailed in this note consists of quality monitoring during mechanical assembling and of a set of electrical tests such as electrical continuity, cell and cross-talk capacitance measurement, and high-voltage behaviour. For the whole test, it has been necessary to develop dedicated electronic boards, to develop measurement methods, and the whole operation software. Making the procedure automatic will guarantee the quality of each module during assembling, cabling, and test in liquid argon
Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer
Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional α-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B
Urbanisation drives an early spring for plants but not for pollinators
peer reviewedCliPS - Fédération Wallonie Bruxelle
Causes and consequences of dispersal in biodiverse spatially structured systems: what is old and what is new?
Dispersal is a well recognized driver of ecological and evolutionary
dynamics, and simultaneously an evolving trait. Dispersal evolution has
traditionally been studied in single-species metapopulations so that it remains
unclear how dispersal evolves in spatially structured communities and food
webs. Since most natural systems are biodiverse and spatially structured, and
thus affected by dispersal and its evolution, this knowledge gap should be
bridged.
Here we discuss whether knowledge established in single-species systems holds
in spatially structured multispecies systems and highlight generally valid and
fundamental principles. Most biotic interactions form the ecological theatre
for the evolutionary dispersal play because interactions mediate patterns of
fitness expectations in space and time. While this allows for a simple
transposition of certain known drivers to a multispecies context, other drivers
may require more complex transpositions, or might not be transferred. We
discuss an important quantitative modulator of dispersal evolution in the
increased trait dimensionality of biodiverse meta-systems and an additional
driver in co-dispersal.
We speculate that scale and selection pressure mismatches due to
co-dispersal, together with increased trait dimensionality may lead to slower
and more "diffuse" evolution in biodiverse meta-systems. Open questions and
potential consequences in both ecological and evolutionary terms call for more
investigation
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method
This paper discusses hadron energy reconstruction for the ATLAS barrel
prototype combined calorimeter (consisting of a lead-liquid argon
electromagnetic part and an iron-scintillator hadronic part) in the framework
of the non-parametrical method. The non-parametrical method utilizes only the
known ratios and the electron calibration constants and does not require
the determination of any parameters by a minimization technique. Thus, this
technique lends itself to an easy use in a first level trigger. The
reconstructed mean values of the hadron energies are within of the
true values and the fractional energy resolution is . The value of the ratio
obtained for the electromagnetic compartment of the combined calorimeter is
and agrees with the prediction that for this
electromagnetic calorimeter. Results of a study of the longitudinal hadronic
shower development are also presented. The data have been taken in the H8 beam
line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- …