249 research outputs found

    Artificial Inhomogeneous Tapered Impedance Sheet Characterization and Applications

    Get PDF
    The ability to manipulate a complex impedance sheet about a PEC or general dielectric cylinder of arbitrary diameter to control the overall scattering characteristics at particular angles for shielding or scattering applications is presented. It is shown that with the capability to readily control both the real and imaginary components of a percolated lossy film\u27s effective impedance, specific impedance distributions can be obtained to effectively direct the overall nulls in the bistatic scattering pattern. The exact approach only requires negligible truncation error of the matrix solution and can be applied to cylinders of arbitrary size. This approach relies on general impedance sheet boundary conditions in addition to a Fourier series representation of the impedance sheet distribution, with the utilization of Wronskian and recurrence relations, to produce a computationally efficient matrix solution for the scattered field expansion coefficient an. This scattering coefficient an can then be included in the expression for a two-dimensional scattering width, allowing for the computation of scattering patterns of arbitrary diameter cylinder impedance sheet distributions. The ability to adapt sheet impedances to effectively control the overall nulls in the bistatic scattering pattern will be demonstrated, with practically-implemented impedance characteristics. Lastly, a novel rectangular X-band waveguide system will be utilized to characterize the electromagnetic properties of the Φ-dependent impedance sheet

    Comparison of different stomatal conductance algorithms for ozone flux modelling

    Get PDF
    A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatalconductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221–224.] algorithm for calculating stomatalconductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An

    Testing Above- and Below-Canopy Representations of Turbulent Fluxes in an Energy Balance Snowmelt Model

    Get PDF
    Turbulent fluxes of sensible and latent heat are important processes in the surface energy balance that drives snowmelt. Modeling these fluxes in a forested environment is complicated because of the canopy effects on the wind field. This paper presents and tests a turbulent flux model developed to represent these processes in an energy balance snowmelt model. The goal is to model these processes using the readily available inputs of canopy height and leaf area index in a way that minimizes the number of parameters, state variables, and assumptions about hard to quantify processes. Selected periods from 9 years of eddy-covariance (EC) measurements at Niwot Ridge, Colorado, were used to evaluate the effectiveness of this modeling approach. The model was able to reproduce the above-canopy sensible and latent heat fluxes reasonably with the correlation higher for sensible heat than latent heat. The modeled values of the below-canopy latent heat fluxes also matched the EC-measured values. The model captured the nighttime below-canopy sensible heat flux quite well, but there were discrepancies in daytime sensible heat flux possibly due to mountain slope circulation not quantifiable in this kind of model. Despite the uncertainties in the below-canopy sensible heat fluxes, the results are encouraging and suggest that reasonable predictions of turbulent flux energy exchanges and subsequent vapor losses from snow in forested environments can be obtained with a parsimonious single-layer representation of the canopy. The model contributes an improved physically based capability for predicting the snow accumulation and melt in a forested environment

    Late Winter Biogeochemical Conditions Under Sea Ice in the Canadian High Arctic

    Get PDF
    With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2) uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W) in the Canadian High Arctic. Results show relatively low surface water (1–10 m) nitrate (<1.3 µM) and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1), total alkalinity (mean±SD=2134±11.09 µmol kg−1) and under-ice pCO2sw (mean±SD=286±17 µatm). These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season

    The USDA Barley Core Collection:Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies

    Get PDF
    New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections

    Role of forested land for natural flood management in the UK: A review

    Get PDF

    Spectral Characteristics and Correction of Long-Term Eddy-Covariance Measurements Over Two Mixed Hardwood Forests in Non-Flat Terrain

    Full text link
    We present turbulence spectra and cospectra derived from long-term eddy-covariancemeasurements (nearly 40,000 hourly data over three to four years) and the transferfunctions of closed-path infrared gas analyzers over two mixed hardwood forests inthe mid-western U.S.A. The measurement heights ranged from 1.3 to 2.1 times themean tree height, and peak vegetation area index (VAI) was 3.5 to 4.7; the topographyat both sites deviates from ideal flat terrain. The analysis follows the approach ofKaimal et al. ( Quart. J. Roy. Meteorol. Soc. 98 , 563–589, 1972) whose results were based upon 15 hours of measurements atthree heights in the Kansas experiment over flatter and smoother terrain. Both thespectral and cospectral constants and stability functions for normalizing and collapsingspectra and cospectra in the inertial subrange were found to be different from those ofKaimal et al. In unstable conditions, we found that an appropriate stabilityfunction for the non-dimensional dissipation of turbulent kinetic energy is of the form Φ ε(ζ) = (1 - b - ζ) -1/4 - c - ζ, where ζ representsthe non-dimensional stability parameter. In stable conditions, a non-linear functionG xy (ζ) = 1 + b xy ζ c xy (c xy < 1) was found to benecessary to collapse cospectra in the inertial subrange. The empirical cospectralmodels of Kaimal et al. were modified to fit the somewhat more (neutraland unstable) or less (stable) sharply peaked scalar cospectra observed over forestsusing the appropriate cospectral constants and non-linear stability functions. Theempirical coefficients in the stability functions and in the cospectral models varywith measurement height and seasonal changes in VAI. The seasonal differencesare generally larger at the Morgan Monroe State Forest site (greater peak VAI) andcloser to the canopy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42506/1/10546_2004_Article_5127238.pd
    corecore