56 research outputs found

    Second-harmonic generation sensitivity to transmembrane potential in normal and tumor cells.

    Get PDF
    Second-harmonic generation (SHG) is emerging as a powerful tool for the optical measurement of transmembrane potential in live cells with high sensitivity and temporal resolution. Using a patch clamp, we characterize the sensitivity of the SHG signal to transmembrane potential for the RH 237 dye in various normal and tumor cell types. SHG sensitivity shows a significant dependence on the type of cell, ranging from 10 to 17% per 100 mV. Furthermore, in the samples studied, tumor cell lines display a higher sensitivity compared to normal cells. In particular, the SHG sensitivity increases in the cell line Balb/c3T3 by the transformation induced with SV40 infection of the cells. We also demonstrate that fluorescent labeling of the membrane with RH 237 at the concentration used for SHG measurements does not induce any measurable alteration in the electrophysiological properties of the cells investigated. Therefore, SHG is suitable for the investigation of outstanding questions in electrophysiology and neurobiology

    HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors

    Get PDF
    An important target in the understanding of the pathogenesis of acute myeloid leukemias (AML) relies on deciphering the molecular features of normal and leukemic hemopoietic progenitors. In particular, the analysis of the mechanisms involved in the regulation of cell proliferation is decisive for the establishment of new targeted therapies. To gain further insight into this topic we report herein a novel approach by analyzing the role of HERG K+ channels in the regulation of hemopoietic cell proliferation. These channels, encoded by the human ether-a-go-go-related gene (herg), belong to a family of K, channels, whose role in oncogenesis has been recently demonstrated. We report here that herg is switched off in normal peripheral blood mononuclear cells (PBMNC) as well as in circulating CD34(+) cells, however, it is rapidly turned on in the latter upon induction of the mitotic cycle. Moreover, herg appears to be constitutively activated in leukemic cell lines as well as in the majority of circulating blasts from primary AML. Evidence is also provided that HERG channel activity regulates cell proliferation in stimulated CD34(+) as well as in blast cells from AML patients. These results open new perspectives on the pathogenetic role of HERG K+ channels in leukemias
    corecore