133 research outputs found

    On the multiplicity of the O-star Cyg OB2 #8A and its contribution to the gamma-ray source 3EG J2033+4118

    Full text link
    We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6 + O5.5 binary system with a period of about 21.9 d. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to gamma-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative gamma-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118.Comment: 8 pages, 4 figures, conference on "The Multiwavelength Approach to Gamma-Ray Sources", to appear in Ap&S

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    Mersenne Factorization Factory

    Get PDF
    We present work in progress to completely factor seventeen Mersenne numbers using a variant of the special number field sieve where sieving on the algebraic side is shared among the numbers. It is expected that it reduces the overall factoring effort by more than 50%. As far as we know this is the first practical application of Coppersmith’s “factorization factory” idea. Most factorizations used a new double-product approach that led to additional savings in the matrix step

    Computing pseudotriangulations via branched coverings

    Full text link
    We describe an efficient algorithm to compute a pseudotriangulation of a finite planar family of pairwise disjoint convex bodies presented by its chirotope. The design of the algorithm relies on a deepening of the theory of visibility complexes and on the extension of that theory to the setting of branched coverings. The problem of computing a pseudotriangulation that contains a given set of bitangent line segments is also examined.Comment: 66 pages, 39 figure

    Synthesizing evidence for the external cycling of NOx in high- to low-NOx atmospheres

    Get PDF
    External cycling regenerating nitrogen oxides (NOx ≡ NO + NO2) from their oxidative reservoir, NOz, is proposed to reshape the temporal–spatial distribution of NOx and consequently hydroxyl radical (OH), the most important oxidant in the atmosphere. Here we verify the in situ external cycling of NOx in various environments with nitrous acid (HONO) as an intermediate based on synthesized field evidence collected onboard aircraft platform at daytime. External cycling helps to reconcile stubborn underestimation on observed ratios of HONO/NO2 and NO2/NOz by current chemical model schemes and rationalize atypical diurnal concentration profiles of HONO and NO2 lacking noontime valleys specially observed in low-NOx atmospheres. Perturbation on the budget of HONO and NOx by external cycling is also found to increase as NOx concentration decreases. Consequently, model underestimation of OH observations by up to 41% in low NOx atmospheres is attributed to the omission of external cycling in models

    Astrophysically important 19Ne states studied with the 2H(18F, α+15 O)n reaction

    Get PDF
    The nuclear structure of 19Ne near the proton threshold is of interest for understanding the rates of proton-induced reactions on 18F in novae. Analogues for several states in the mirror nucleus 19F have not yet been identified in 19Ne indicating the level structure of 19Ne in this region is incomplete. The 18F(d,n)19Ne and 18F(d, p)19F reactions have been measured simultaneously at Ec.m. = 14.9 MeV. The experiments were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL) by bombarding a 720-μg/cm2 CD2 target with a radioactive 18F beam. The 19Ne states of interest near the proton threshold decay by breakup into a and 15O particles. These decay products were detected in coincidence with position-sensitive E-ΔE silicon telescopes. The α and 15N particles from the break up of the mirror nucleus 19F were also measured with these detectors. Particle identification, coincidence, and Q-value requirements enable us to distinguish the reaction of interest from other reactions. The reconstruction of relative energy of the detected particles reveals the excited states of 19Ne and 19F which are populated. The neutron (proton) angular distributions for states in 19Ne (19F) were extracted using momentum conservation. The observed states in 19Ne and 19F will be presented

    Charge Transfer Reactions

    Full text link
    • …
    corecore