480 research outputs found
Perceptions and experience of employment regulation in UK small firms
The view that excessive regulation constrains small business growth has been a persistent theme within business and policy communities, although recent studies have demonstrated the actual effects of regulation to be relatively modest. A prior small-scale study proposed four reasons why employment legislation does 'not damage' small firms. We attempt to assess the robustness of these propositions in a large-scale survey of 16 779 small firms. Results provide empirical support for three propositions. Firstly, perceived dissatisfaction masks actual effects. Secondly, competitive conditions mediate regulatory effects; however, even resource-constrained firms reported few negative effects. Thirdly, informality eases regulatory impact. Results failed to confirm that older laws are 'routinised'. Length of time as a business owner was found to be more influential than age of regulation, with owners who have been in business for many years having a longer 'window of exposure' increasing their likelihood of experiencing negative and positive effects
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
In search of hair damage using metabolomics?
YesHair fibres are extraordinary materials, not least because they are exquisitely formed by each of the 5 million or so hair follicles on our bodies and have functions that cross from physiology to psychology, but also because they have well known resistance to degradation as seen in hair surviving from archaeological and historical samples [1]. Hair fibres on the head grow at around 1cm each month, together totalling approximately 12km of growth per person per year. Each fibre is incredibly strong for its small diameter; with one fibre typically holding 100g and together a well-formed ponytail [allegedly] has the collective strength to support the weight of a small elephant! Hair – and from here I mean scalp hair – is under constant scrutiny by each of us; whether it be style, split ends, the first few grey hairs or the collection of hairs in the shower that should be firmly attached - leading to the fear that is hair loss
Crossover and scaling in a two-dimensional field-tuned superconductor
Using an analysis similar to that of Imry and Wortis, it is shown that the
apparent first order superconductor to metal transition, which has been claimed
to exist at low values of the magnetic field in a two-dimensional field-tuned
system at zero temperature,can be consistentlyinterpreted as a sharp crossover
from a strong superconductor to an inhomogeneous state, which is a weak
superconductor. The true zero-temperature superconductor to insulator
transition within the inhomogenous state is conjectured to be that of randomly
diluted XY model. An explaination of the observed finite temperature
approximate scaling of resistivity close to the critical point is speculated
within this model.Comment: 5 pages, 2 figures, corrected and modified according to referee
Report
Von Neumann equations with time-dependent Hamiltonians and supersymmetric quantum mechanics
Starting with a time-independent Hamiltonian and an appropriately chosen
solution of the von Neumann equation we construct
its binary-Darboux partner and an exact scattering solution of
where is time-dependent and not
isospectral to . The method is analogous to supersymmetric quantum mechanics
but is based on a different version of a Darboux transformation. We illustrate
the technique by the example where corresponds to a 1-D harmonic
oscillator. The resulting represents a scattering of a soliton-like
pulse on a three-level system.Comment: revtex, 3 eps file
Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut
Chronic disruption of the intestinal microbiota in adult cystic fibrosis (CF) patients is associated with local and systemic inflammation, and has been linked to the risk of serious comorbidities. Supplementation with high amylose maize starch (HAMS) might provide clinical benefit by promoting commensal bacteria and the biosynthesis of immunomodulatory metabolites. However, whether the disrupted CF gut microbiota has the capacity to utilise these substrates is not known. We combined metagenomic sequencing, in vitro fermentation, amplicon sequencing, and metabolomics to define the characteristics of the faecal microbiota in adult CF patients and assess HAMS fermentation capacity. Compared to healthy controls, the faecal metagenome of adult CF patients had reduced bacterial diversity and prevalence of commensal fermentative clades. In vitro fermentation models seeded with CF faecal slurries exhibited reduced acetate levels compared to healthy control reactions, but comparable levels of butyrate and propionate. While the commensal genus Faecalibacterium was strongly associated with short chain fatty acid (SCFA) production by healthy microbiota, it was displaced in this role by Clostridium sensu stricto 1 in the microbiota of CF patients. A subset of CF reactions exhibited enterococcal overgrowth, resulting in lactate accumulation and reduced SCFA biosynthesis. The addition of healthy microbiota to CF faecal slurries failed to displace predominant CF taxa, or substantially influence metabolite biosynthesis. Despite significant microbiota disruption, the adult CF gut microbiota retains the capacity to exploit HAMS. Our findings highlight the potential for taxa associated with the altered CF gut microbiotato mediate prebiotic effects in microbial systems subject to ongoing perturbation, irrespective of the depletion of common commensal clades
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Transport Properties near the z=2 Insulator-Superconductor Transition
We consider here the fluctuation conductivity near the point of the
insulator-superconductor transition in a system of regular Josephson junction
arrays in the presence of particle-hole asymmetry or equivalently homogeneous
charge frustration. The transition is characterised by the dynamic critical
exponent , opening the possibility of the perturbative
renormalization-group (RG) treatment. The quartic interaction in the
Ginzburg-Landau action and the coupling to the Ohmic heat bath, giving the
finite quasiparticle life-time, lead to the non-monotonic behavior of the dc
conductivity as a function of temperature in the leading logarithmic
approximation.Comment: Revised version for publication. To appear in PR
Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure
We study an isolated, perfectly reflecting, mirror illuminated by an intense
laser pulse. We show that the resulting radiation pressure efficiently
entangles a mirror vibrational mode with the two reflected optical sideband
modes of the incident carrier beam. The entanglement of the resulting
three-mode state is studied in detail and it is shown to be robust against the
mirror mode temperature. We then show how this continuous variable entanglement
can be profitably used to teleport an unknown quantum state of an optical mode
onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure
Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering
We report a neutron and Raman scattering study of a single-crystal of
La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic
neutron scattering measurements show the presence of two phases, corresponding
to the two edges of the first miscibility gap, all the way up to 300 K. An
additional oxygen redistribution, driven by electronic energies, is identified
at 250 K in Raman scattering (RS) experiments by the simultaneous onset of
two-phonon and two-magnon scattering, which are fingerprints of the insulating
phase. Elastic neutron scattering measurements show directly an
antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening
of the superconducting gap manifests itself as a redistribution of electronic
Raman scattering below the superconducting transition temperature, T_c = 24K. A
pronounced temperature-dependent suppression of the intensity of the (100)
magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to
a change of relative volume fraction of superconducting and antiferromagnetic
phases with decreasing temperature caused by a form of a superconducting
proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
- …