175 research outputs found

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure

    A qualitative study of the impact of severe asthma and its treatment showing that treatment burden is neglected in existing asthma assessment scales

    Get PDF
    Background People with severe asthma experience significant respiratory symptoms and suffer adverse effects of oral corticosteroids (OCS), including disturbed mood and physical symptoms. OCS impacts on health-related quality of life (HRQoL) have not been quantified. Asthma HRQoL scales are valid as outcome measures for patients requiring OCS only if they assess the deficits imposed by OCS. Aims The aim of this study was to compare the burden of disease and treatment in patients with severe asthma with items in eight asthma-specific HRQoL scales. Methods Twenty-three patients with severe asthma recruited from a severe asthma clinic were interviewed about the impact of their respiratory symptoms and the burden of their treatment. The domains from a thematic analysis of these interviews were compared with the items of eight asthma-specific HRQoL scales. Results In addition to the burden caused by symptoms, ten domains of OCS impact on HRQoL were identified: depression, irritability, sleep, hunger, weight, skin, gastric, pain, disease anxiety, and medication anxiety. Some patients experienced substantial HRQoL deficits attributed to OCS. Although all HRQoL scales include some OCS-relevant items, all eight scales fail to adequately assess the several types of burden experienced by some patients while on OCS. Conclusion The burden of OCS in severe asthma is neglected in policy and practice because it is not assessed in outcome studies. Existing asthma HRQoL scales provide an overly positive estimation of HRQoL in patients with frequent exposure to OCS and underestimate the benefit of interventions that reduce OCS exposure. Changes to existing measurement procedures are needed

    Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry A1A_1

    Full text link
    Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1A_1. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen target for values of Q2Q^2 between 1.2 and 12 GeV2^2 and values of W2W^2 between 1 and 4 GeV2^2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable xx. This finding implies that the description of A1A_1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2Q^2 above 1.6 GeV2^2.Comment: 5 pages, 1 eps figure, table added, new references added, in print in Phys. Rev. Let

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Observation of a Single-Spin Azimuthal Asymmetry in Semi-Inclusive Pion Electro-Production

    Get PDF
    Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle phi of the pion relative to the lepton scattering plane was observed for pi+ electro-production on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sin(phi) moment of the cross section is 0.022 +/- 0.005 +/- 0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a time-reversal-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark.Comment: 5 pages of RevTex, 3 ps figures, 2 table

    The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering

    Get PDF
    The flavor asymmetry of the light quark sea of the nucleon is determined in the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time from semi-inclusive deep-inelastic scattering. The quantity (dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields of positive and negative pions from unpolarized hydrogen and deuterium targets. The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small change in extraction of dbar-ubar and comparison with a high q2 parameterizatio

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES

    Get PDF
    We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.Comment: 5 pages (latex), 4 figures (eps
    corecore