3,534 research outputs found

    Orthogonality of Biphoton Polarization States

    Full text link
    Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is demonstrated experimentally, in a generalization of the well-known anti-correlation 'dip' experiment.Comment: Submitted to Phys.Rev.Let

    Photon splitting in atomic fields

    Full text link
    Photon splitting due to vacuum polarization in the electric field of an atom is considered. We survey different theoretical approaches to the description of this nonlinear QED process and several attempts of its experimental observation. We present the results of the lowest-order perturbation theory as well as those obtained within the quasiclassical approximation being exact in the external field strength. The experiment where photon splitting was really observed for the first time is discussed in details. The results of this experiment are compared with recent theoretical estimations.Comment: 45 pages, 24 figure

    Measurement of qutrits

    Full text link
    We proposed the procedure of measuring the unknown state of the three-level system - the qutrit, which was realized as the arbitrary polarization state of the single-mode biphoton field. This procedure is accomplished for the set of the pure states of qutrits; this set is defined by the properties of SU(2) transformations, that are done by the polarization transformers.Comment: 9 pages, 9 figure

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    Experimental investigation of high-energy photon splitting in atomic fields

    Get PDF
    The new data analysis of the experiment, where the photon splitting in the atomic fields has been observed for the first time, is presented. This experiment was performed at the tagged photon beam of the ROKK-1M facility at the VEPP-4M collider. In the energy region of 120-450 MeV, the statistics of 1.61091.6\cdot 10^9 photons incident on the BGO target was collected. About 400 candidates to the photon splitting events were reconstructed. Within the attained experimental accuracy, the experimental results are consistent with the cross section calculated exactly in an atomic field. The predictions obtained in the Born approximation significantly differ from the experimental results.Comment: 11 pages, 6 figures, LaTe

    Relative luminosity measurement of the LHC with the ATLAS forward calorimeter

    Full text link
    In this paper it is shown that a measurement of the relative luminosity changes at the LHC may be obtained by analysing the currents drawn from the high voltage power supplies of the electromagnetic section of the forward calorimeter of the ATLAS detector. The method was verified with a reproduction of a small section of the ATLAS forward calorimeter using proton beams of known beam energies and variable intensities at the U-70 accelerator at IHEP in Protvino, Russia. The experimental setup and the data taking during a test beam run in April 2008 are described in detail. A comparison of the measured high voltage currents with reference measurements from beam intensity monitors shows a linear dependence on the beam intensity. The non-linearities are measured to be less than 0.5 % combining statistical and systematic uncertainties.Comment: 16 page

    Determination of Redshifts for Selected IVS Sources. I

    Full text link
    From observations with the 6-m BTA telescope at SAO RAS, we have determined spectroscopic redshifts of seven optical objects whose coordinates coincide with those of radio sources from the list of IVS (International VLBI Service for Geodesy and Astrometry). When compared to radio data, the obtained spectra and redshifts provide evidence for reliable identification of four observed objects; the other three require further study. The distances to the sources derived from our measurements will make it possible to refine the current estimates for parameters of cosmological models based on proper motions of these objects, which are determined from geodetic VLBI observations.Comment: 8 pp., submitted to Astrophysic

    Magnetic resonance imaging in the differential diagnosis of true placenta accreta: a clinical case

    Get PDF
    True placenta accreta is the attachment of chorionic villi to the myometrium, possibly penetrating into the thickness of the myometrium and its outside, including through the serous tunic. The main current diagnostic techniques are considered to be ultrasonography, laboratory diagnosis (elevated human chorionic gonadotropin and placental lactogen levels), and clinical data (pain and vaginal discharge). Magnetic resonance imaging is deemed to be an adjuvant technique. By using a clinical example, this paper considers the capabilities of magnetic resonance imaging to diagnose this abnormality and to choose a right treatment policy. The abnormality is compared with the conditions (trophoblastic tumor and myoma with lysis) that are similar in their diagnosis and magnetic resonance pattern). The disorder in question is rather rare and its detailed consideration, determination of the capabilities of various techniques, and comparison with externally similar cases areimportant for the development of diagnostic opportunities
    corecore