88 research outputs found
Recommended from our members
Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought
Abstract Photoprotection strategies in a Pinus halepensis forest at the dry timberline that shows sustained photosynthetic activity during 6-7 months summer drought were characterized and quantified under field conditions. Measurements of chlorophyll fluorescence, leaf-level gas exchange and pigment concentrations were made in both control and summer-irrigated plots, providing the opportunity to separate the effects of atmospheric from soil water stress on the photoprotection responses. The proportion of light energy incident on the leaf surface ultimately being used for carbon assimilation was 18% under stress-free conditions (irrigated, winter), declining to 4% under maximal stress (control, summer). Allocation of absorbed light energy to photochemistry decreased from 25 to 15% (control) and from 50% to 30% (irrigated) between winter and summer, highlighting the important role of pigment-mediated energy dissipation processes. Photorespiration or other non-assimilatory electron flow accounted for 15-20% and less than 10% of incident light energy during periods of high and low carbon fixation, respectively, representing a proportional increase in photochemical energy going to photorespiration in summer but a decrease in the absolute amount of photorespiratory CO2 loss. Resilience of the leaf photochemical apparatus was expressed in the complete recovery of photosystem II efficiency (ΦPSII) and relaxation of the xanthophyll de-epoxidation state (DPS) on the diurnal cycle throughout the year, and no seasonal decrease in pre-dawn maximal photosystem II efficiency (Fv/Fm). The response of CO2 assimilation and photoprotection strategies to stomatal conductance and leaf water potential appeared independent of whether stress was due to atmospheric or soil water deficits across seasons and treatments. The range of protection characteristics identified provide insights into the relatively high carbon economy under these dry conditions, conditions which are predicted for extended areas in the Mediterranean and other regions due to global climate change
Recommended from our members
Urban Ancient Woodland in Britain’s Modern Landscape
Ancient woodland covers around 2.5% of the UK’s land surface. It harbours species-rich communities including ancient woodland indicator plants, which provide evidence of a constant landscape that has been under traditional management for several centuries. Despite their protection in the planning process, when urban development expands these woodlands can become islands within an urban matrix. In this context, woodland plant communities may be affected by pollutants, compaction of soils, changing hydrology, invasive species, habitat fragmentation or isolation.
We investigated the distribution of ancient woodland in the UK and assessed the land use surrounding these sites to identify ‘urban ancient woodlands’ that were near human-dominated land cover. 10.4% of ancient woodland was found to be within 100 metres of land classed as urban fabric in the 2018 CORINE land cover data. This small but significant proportion of ancient woodland is likely to be affected by the impacts of urbanisation
Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO2 fluxes from a Mediterranean soil
The oxygen stable isotope composition (d18O) of CO2 is a valuable tool for studying the
gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records
the isotopic signal of water pools subjected to precipitation and evaporation events. The
d18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion
of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration.
Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times,
have been proposed recently to explain field observations of the d18O signatures of net
soil CO2 fluxes. How important these catalytic reactions are for accurately predicting
large-scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain
because of the lack of field data. In this study, we determined the d18O signatures of net
soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the
3 days of measurements, the observed d18O signatures of net soil CO2 fluxes became
progressively enriched with a well-characterized diurnal cycle. Model simulations
indicated that the d18O signatures recorded the interplay of two effects: (1) progressive
enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the
isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric
invasion’ to net signatures. We conclude that there is a need for better understanding
of the role of enzymatic reactions, and hence soil biology, in determining the
contributions of soil fluxes to oxygen isotope signals in atmospheric CO2
Investigating Forest Photosynthetic Response to Elevated CO2 Using UAV-Based Measurements of Solar Induced Fluorescence
The response of ecosystems to increasing atmospheric CO2 will have significant, but still uncertain, impacts on the global carbon and water cycles. A lot of infounation has been gained from Free Air CO2 Enrichment (FACE) experiments, but the response of mature forest ecosystems remains a significant knowledge gap. One of the challenges in FACE studies is obtaining an integrated measure of canopy photosynthesis at the scale of the treatment ring. A new remote sensing approach for measuring photosynthetic activity is based on Solar Induced Fluorescence (SIF), which is emitted by plants during photosynthesis, and is closely linked to the rates and regulation of photosynthesis. We proposed that UAV-based SIF measurements, that enable the spectrometer field of view to be targeted to the treatment ring, provide a unique opportunity for investigating the dynamics of photosynthetic responses to elevated CO2. We have successfully tested this approach in a new FACE site, located in a mature oak forest in the UK. We flew a series of flights across the experiment arrays, collecting a number of spectra. We combined these with ground-based physiological and optical measurements, and see great promise in the use of UAV-based SIF measurements in FACE and other global change experiments.Peer reviewe
Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains
Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1–6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.
Includes Supplementary files
Recommended from our members
TreeView: A small satellite supporting precision forestry for nature-based solutions in a changing climate
The expansion of tree cover is a critical component of the path to net zero and the development of sustainable cities, but reaching this target will require extensive management of this resource. Through leveraging next-generation optical sensor technology and innovations across the payload and spacecraft development, TreeView will provide multispectral data at a ground sampling resolution on the scale of individual trees, providing measurement and monitoring capabilities from space at an unprecedented level.
TreeView has been funded through to a Preliminary Design Review (PDR) by the UK Space Agency’s National Space Innovation Programme. This exciting mission aims to deliver a new perspective on urban green infrastructure in the UK and internationally, and assess the health of larger forest stands.
The mission has a challenging target of an end-to-end budget of £15M and to achieve this, cost, size, weight and power limits are imposed on the payload and spacecraft. Meanwhile, signal to noise performance, spatial and spectral resolution have been set to provide new and unique data not available from Sentinel-2 or commercial providers
Recommended from our members
Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art
Chlorophyll fluorescence (ChlF) information offers a deep insight into the plant physiological status by reason of the close relationship it has with the photosynthetic activity. The unmanned aerial systems (UAS)-based assessment of solar induced ChlF (SIF) using non-imaging spectrometers and radiance-based retrieval methods, has the potential to provide spatio-temporal photosynthetic performance information at field scale. The objective of this manuscript is to report the main advances in the development of UAS-based methods for SIF retrieval with non-imaging spectrometers through the latest scientific contributions, some of which are being developed within the frame of the Training on Remote Sensing for Ecosystem Modelling (TRuStEE) program. Investigations from the Universities of Edinburgh (School of Geosciences) and Tasmania (School of Technology, Environments and Design) are first presented, both sharing the principle of the spectroradiometer optical path bifurcation throughout, the so called ‘Piccolo-Doppio’ and ‘AirSIF’ systems, respectively. Furthermore, JB Hyperspectral Devices’ ongoing investigations towards the closest possible characterization of the atmospheric interference suffered by orbital platforms are outlined. The latest approach focuses on the observation of one single ground point across a multiple-kilometer atmosphere vertical column using the high altitude UAS named as AirFloX, mounted on a specifically designed and manufactured fixed wing platform: ‘FloXPlane’. We present technical details and preliminary results obtained from each instrument, a summary of their main characteristics, and finally the remaining challenges and open research questions are addressed. On the basis of the presented findings, the consensus is that SIF can be retrieved from low altitude spectroscopy. However, the UAS-based methods for SIF retrieval still present uncertainties associated with the current sensor characteristics and the spatio-temporal mismatching between aerial and ground measurements, which complicate robust validations. Complementary studies regarding the standardization of calibration methods and the characterization of spectroradiometers and data processing workflows are also required. Moreover, other open research questions such as those related to the implementation of atmospheric correction, bidirectional reflectance distribution function (BRDF) correction, and accurate surface elevation models remain to be addressed
Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis
Understanding climate controls on gross primary productivity (GPP) is crucial for accurate projections of the future land carbon cycle. Major uncertainties exist due to the challenge in separating GPP and respiration from observations of the carbon dioxide (CO2) flux. Carbonyl sulfide (COS) has a dominant vegetative sink, and plant COS uptake is used to infer GPP through the leaf relative uptake (LRU) ratio of COS to CO2 fluxes. However, little is known about variations of LRU under changing environmental conditions and in different phenological stages. We present COS and CO2 fluxes and LRU of Scots pine branches measured in a boreal forest in Finland during the spring recovery and summer. We find that the diurnal dynamics of COS uptake is mainly controlled by stomatal conductance, but the leaf internal conductance could significantly limit the COS uptake during the daytime and early in the season. LRU varies with light due to the differential light responses of COS and CO2 uptake, and with vapor pressure deficit (VPD) in the peak growing season, indicating a humidity-induced stomatal control. Our COS-based GPP estimates show that it is essential to incorporate the variability of LRU with environmental variables for accurate estimation of GPP on ecosystem, regional, and global scales.Peer reviewe
Assessing a New Clue to How Much Carbon Plants Take Up
Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. Tracking the stronger carbonyl sulfide signal could help
Recommended from our members
Factors affecting soil quality among smallholder macadamia farms in Malawi
Declining soil fertility limits smallholder macadamia productivity in Malawi. To reverse this trend, it is essential to apply organic and inorganic fertilisers in an efficient and effective manner. Yet, fertilizer recommendations for smallholder macadamia (Macadamia integrifolia) production in Malawi are not site-specific. Nutrient imbalances can occur if fertilisers are applied without a clear understanding of whether they are required or not. This may lead to yield losses, unnecessary costs, and other environmental issues associated with excess fertiliser application. To address this research need/ knowledge gap, our study examined the current soil fertility status among smallholder macadamia farms in Malawi. Specifically, the objective was to establish an evidence base for promoting soil fertility restoration interventions for smallholder macadamia production. One hundred and eighty nine soil samples at a depth of 0–15 cm were collected from sixty three smallholder macadamia farms belonging to the Highlands Macadamia Cooperative Union Limited members in central and southern Malawi. We found that the majority of the soils were sandy loams (52%), strongly acidic (mean pH ≤ 5.1), and deficient in essential nutrients required for the healthy growth of macadamia. The soils had an average low cation exchange capacity of 1.67 cmol ( +) kg−1, which is inadequate for macadamia cultivation. More than half of the sampled soils had very low organic matter content (≤ 1%). The low soil organic matter content, coupled with the sandy texture and high acidity, contributed to the observed low concentrations of essential nutrients and cation exchange capacity. Poor agronomic practices and inherent soil characteristics are responsible for this low soil fertility. Altogether, our findings underscore the urgent need to identify and implement more sustainable and effective soil nutrient management practices that help to improve the soil fertility of macadamia farms under smallholder systems
- …