116 research outputs found

    Influence of potential grazers on picocyanobacterial abundance in Lake Biwa revealed with empirical dynamic modeling

    Get PDF
    Picocyanobacteria in lakes generally occur as single cells (single-celled picocyanobacteria; SPcy) or colonies (colonial picocyanobacteria; CPcy), and the latter form has been considered an adaptation to grazing pressure. In addition to direct effects of grazing, grazers may also have important indirect effects on picocyanobacteria, such as those from nutrient regeneration and trophic cascades. Interactions between picocyanobacteria and their grazers in lakes can thus be complex and difficult to predict. To evaluate the influence of various grazers on SPcy and CPcy in Lake Biwa, Japan, we followed seasonal changes in their abundances and potential grazers at 2-week intervals over 2 years. The data collected were analyzed using empirical dynamic modeling (EDM), a model-free, nonlinear time-series method. We found that heterotrophic nanoflagellates (HNF), rotifers (Keratella, Polyarthra, and Trichocerca), cladocerans, and copepods played important and differing roles in controlling the abundances of SPcy and CPcy. Notably, HNF had an apparent positive influence on SPcy abundance, despite being considered major consumers of SPcy. This result suggested that the enhancement of SPcy growth due to nutrient regeneration by HNF might exceed losses from mortality due to grazing by HNF. EDM also suggested that colony formation by picocyanobacteria may be unidirectional, with SPcy tending to form CPcy. Our findings show that the seasonal dynamics of SPcy and CPcy in Lake Biwa are influenced by a variety of grazers, which may play differing ecological roles in the aquatic food web

    Effect of water depth on predation frequency by diving beetles on mosquito larvae prey

    Get PDF
    Diving behavior and its frequency may differ among species of mosquito larvae because of differences in predation pressure. The present study aimed to investigate the relationship between water depth and predation frequency on two mosquito species, Culex tritaeniorhynchus (wetland breeder) and Aedes albopictus (container breeder), by the diving beetle Eretes griseus. Culex tritaeniorhynchus spends more time at the surface than A. albopictus, which spends more time thrashing underwater. When intact mosquito larvae of both species were present, the diving beetles consumed almost all A. albopictus larvae (98.3%). After all the A. albopictus larvae had been consumed, the diving beetles began to prey on C. tritaeniorhynchus. In order to compare the effect of position on the predation preference of the diving beetles, equal numbers of both species were heat-killed and allowed to settle on the bottom of the container. When all the dead mosquito larvae had sunk to the bottom of a plastic container, the diving beetles caught both mosquito species at random. These results indicate that mosquito larvae near the surface were eaten less frequently by diving beetles than those at the bottom. The low diving frequency of C.tritaeniorhynchus is regarded as a form of anti-predatory behavior

    An efficient early-pooling protocol for environmental DNA metabarcoding

    Get PDF
    Environmental DNA (eDNA) metabarcoding, a method that applies high-throughput sequencing and universal primer sets to eDNA analysis, has been a promising approach for efficient, comprehensive biodiversity monitoring. However, significant money-, labor-, and time-costs are still required for performing eDNA metabarcoding. In this study, we assessed the performance of an “early-pooling” protocol (a protocol based on 1st PCR tagging) to reduce the experimental costs of library preparation for eDNA metabarcoding. Specifically, we performed three experiments to investigate the effects of 1st PCR-tagging and 2nd PCR-indexing protocols on the community composition revealed by eDNA metabarcoding, the effects of post-1st PCR exonuclease purification on tag jumping (corresponds to index hopping in 2nd PCR indexing), and the effects of the number of PCR replicates and the eDNA template volume on the number of detected OTUs. Analyses of 204 eDNA libraries from three natural aquatic ecosystems and one mock eDNA sample showed that (i) 1st PCR tagging does not cause clear biases in the outcomes of eDNA metabarcoding, (ii) post-1st PCR exonuclease purification reduces the risk of tag jumping, and (iii) increasing the eDNA template volume may increase the number of detected OTUs and reduce variations in the detected community compositions, similar to increasing the number of 1st PCR replicates. Our results show that an early-pooling protocol with post-1st PCR exonuclease purification and an increased amount of the DNA template reduces the risk of tag jumping, the costs for consumables and reagents (except for many tagged 1st PCR primers), and the handling time in library preparation, and produces similar results to a 2nd PCR-indexing protocol. Therefore, once a target metabarcoding region is selected and a set of tagged-1st PCR primers is prepared, the early-pooling protocol provides a cost, labor, and time-efficient approach for processing a large number of samples

    Variations in the reproductive cycle of Bornean montane tree species along elevational gradients on ultrabasic and non-ultrabasic soils

    Get PDF
    Although lowland tree species in the ever-wet regions of Southeast Asia are characterized by the supra-annual cycle of reproduction, the reproductive phenology of montane tree species remains poorly understood. In this study, we investigated the reproductive phenology of montane tree species using litter samples that were collected every 2 weeks from six rainforest sites, consisting of three elevations (1700, 2700, and 3100 m), on Mount Kinabalu, Borneo. At each elevation, one site was on infertile ultrabasic soil and one was on relatively fertile non-ultrabasic soil. We used a composite sample from 10 or 20 litter traps per site and sorted it by species. Therefore, the obtained data captured reproductive phenology in the population of each species rather than in an individual tree. Ten-year time series of flower and fruit litterfall were obtained for 30 and 39 tree species, respectively. Fourier analysis was used to identify the dominant cycle of each time series. The most abundant cycle across species was supra-annual, followed by sub-annual, and annual cycles. Many species at higher elevations showed supra-annual cycles of flower litterfall, whereas species in the 1700 m sites often showed annual or sub-annual cycles regardless of soil types. No systematic differences were found among sites for fruit litterfall. Mechanisms underlying these elevational patterns in reproductive cycle remain unclear but may include more severe El Niño droughts, lower primary productivity, lower soil fertility, and the absence of some sub-annually or annually reproducing families at higher elevations

    Are microbes growing on flowers evil? Effects of old flower microbes on fruit set in a wild ginger with one-day flowers, Alpinia japonica (Zingiberaceae)

    Get PDF
    Flowers are colonized and inhabited by diverse microbes. Flowers have various mechanisms to suppress microbial growth, such as flower volatiles, reactive oxygen and secondary compounds. Besides, plants rapidly replace flowers that have a short lifespan, and old flowers senesce. They may contribute to avoiding adverse effects of the microbes. In this study, we investigate if the flower microbial community on old flowers impedes fruit and seed production in a wild ginger with one-day flowers. We focus on microbes on old flowers because they may be composed of microbes that would grow during flowering if the flowers did not have mechanisms to suppress microbial growth. We inoculated newly opened flowers with old flower microbes, and monitored the effects on fruit and seed set. We also assessed prokaryotic communities on the flowers using 16S rRNA amplicon sequencing. We found six bacterial amplicon sequence variants (ASVs) whose proportions were increased on the inoculated flowers. These ASVs were also found on flower buds and flowers that were bagged by net or paper during anthesis, suggesting that they had been present in small numbers prior to flowering. Fruit set was negatively associated with the proportions of these ASVs, while seed set was not. The results suggest that old flowers harbor microbial communities different from those at anthesis, and that the microbes abundant on old flowers negatively affect plant reproduction. Although it has received little attention, antagonistic microbes that rapidly proliferate on the flowers may have affected the evolution of various flower characteristics such as flower volatiles and life span

    Resident Macrophages in SS

    Get PDF
    Macrophages (MΦs) are critical regulators of immune response and serve as a link between innate and acquired immunity. The precise mechanism of involvement of tissue-resident MΦs in the pathogenesis of autoimmune diseases is not clear. Here, using a murine model for Sjögren’s syndrome (SS), we investigated the role of tissue-resident MΦs in the onset and development of autoimmunity. Two unique populations of CD11bhigh and CD11blow resident MΦs were observed in the target tissue of the SS model. Comprehensive gene expression analysis of chemokines revealed effective production of CCL22 by the CD11bhigh MΦs. CCL22 upregulated the migratory activity of CD4+ T cells by increasing CCR4, a receptor of CCL22, on T cells in the SS model. In addition, CCL22 enhanced IFN-γ production of T cells of the SS model, thereby suggesting that CCL22 may impair the local immune tolerance in the target organ of the SS model. Moreover, administration of anti-CCL22 antibody suppressed autoimmune lesions in the SS model. Finally, histopathological analysis revealed numerous CCL22-producing MΦs in the minor salivary gland tissue specimens of the SS patients. CCL22-producing tissue-resident MΦs may control autoimmune lesions by enhancing T cell response in the SS model. These results suggest that specific chemokines and their receptors may serve as novel therapeutic or diagnostic targets for SS

    CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome

    Get PDF
    Macrophages (MΦs) are critical regulators of immune response and serve as a link between innate and acquired immunity. The precise mechanism of involvement of tissue-resident MΦs in the pathogenesis of autoimmune diseases is not clear. Here, using a murine model for Sjögren's syndrome (SS), we investigated the role of tissue-resident MΦs in the onset and development of autoimmunity. Two unique populations of CD11bhigh and CD11blow resident MΦs were observed in the target tissue of the SS model. Comprehensive gene expression analysis of chemokines revealed effective production of CCL22 by the CD11bhigh MΦs. CCL22 upregulated the migratory activity of CD4+ T cells by increasing CCR4, a receptor of CCL22, on T cells in the SS model. In addition, CCL22 enhanced IFN-γ production of T cells of the SS model, thereby suggesting that CCL22 may impair the local immune tolerance in the target organ of the SS model. Moreover, administration of anti-CCL22 antibody suppressed autoimmune lesions in the SS model. Finally, histopathological analysis revealed numerous CCL22-producing MΦs in the minor salivary gland tissue specimens of the SS patients. CCL22-producing tissue-resident MΦs may control autoimmune lesions by enhancing T cell response in the SS model. These results suggest that specific chemokines and their receptors may serve as novel therapeutic or diagnostic targets for SS

    Identification of prophylactic drugs for oxaliplatin-induced peripheral neuropathy using big data

    Get PDF
    Background: Drug repositioning is a cost-effective method to identify novel disease indications for approved drugs; it requires a shorter developmental period than conventional drug discovery methods. We aimed to identify prophylactic drugs for oxaliplatin-induced peripheral neuropathy by drug repositioning using data from large-scale medical information and life science information databases. Methods: Herein, we analyzed the reported data between 2007 and 2017 retrieved from the FDA’s database of spontaneous adverse event reports (FAERS) and the LINCS database provided by the National Institute of Health. The efficacy of the drug candidates for oxaliplatin-induced peripheral neuropathy obtained from the database analysis was examined using a rat model of peripheral neuropathy. Additionally, we compared the incidence of peripheral neuropathy in patients who received oxaliplatin at the Tokushima University Hospital, Japan. The effects of statins on the animal model were examined in six-week-old male Sprague–Dawley rats and seven or eight-week-old male BALB/C mice. Retrospective medical chart review included clinical data from Tokushima University Hospital from April 2009 to March 2018. Results: Simvastatin, indicated for dyslipidemia, significantly reduced the severity of peripheral neuropathy and oxaliplatin-induced hyperalgesia. In the nerve tissue of model rats, the mRNA expression of Gstm1 increased with statin administration. A retrospective medical chart review using clinical data revealed that the incidence of peripheral neuropathy decreased with statin use. Conclusion and relevance: Thus, drug repositioning using data from large-scale basic and clinical databases enables the discovery of new indications for approved drugs with a high probability of success
    corecore