140 research outputs found

    Multi-object and long-slit spectroscopy of very low mass brown dwarfs in the Orion Nebular Cluster

    Get PDF
    We present the results of an H-and K-band multi-object and long-slit spectroscopic survey of substellar mass candidates in the outer regions of the Orion Nebula Cluster. The spectra were obtained using MOIRCS on the 8.2m Subaru telescope and ISLE on the 1.88m telescope of Okayama Astrophysical Observatory. Eight out of twelve spectra show strong water absorption and we confirm that their effective temperatures are ≤3000K (spectral type ≥M6) from a chi-square fit to synthetic spectra. We plot our sources on an HR diagram overlaid with theoretical isochrones of low-mass objects and identify three new young brown dwarf candidates. One of the three new candidates is a cool object near the brown dwarf and planetary mass boundary. Based on our observations and those of previous studies, we determine the stellar (0.08Peer reviewe

    A Common Proper Motion Stellar Companion to HAT-P-7

    Get PDF
    We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at approx. 3.9 arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first reported by Winn et al. (2009), based on long-term radial velocity measurements. We revisit the migration mechanism of HAT-P-7b given the presence of those companions, and propose sequential Kozai migration as a likely scenario in this system. This scenario may explain the reason for an outlier in the discussion of the spin-orbit alignment timescale for HAT-P-7b by Albrecht et al. (2012)

    SPOTS: The Search for Planets Orbiting Two Stars. III. Complete Sample and Statistical Analysis

    Full text link
    Binary stars constitute a large percentage of the stellar population, yet relatively little is known about the planetary systems orbiting them. Most constraints on circumbinary planets (CBPs) so far come from transit observations with the Kepler telescope, which is sensitive to close-in exoplanets but does not constrain planets on wider orbits. However, with continuous developments in high-contrast imaging techniques, this population can now be addressed through direct imaging. We present the full survey results of the Search for Planets Orbiting Two Stars (SPOTS) survey, which is the first direct imaging survey targeting CBPs. The SPOTS observational program comprises 62 tight binaries that are young and nearby, and thus suitable for direct imaging studies, with VLT/NaCo and VLT/SPHERE. Results from SPOTS include the resolved circumbinary disk around AK Sco, the discovery of a low-mass stellar companion in a triple packed system, the relative astrometry of up to 9 resolved binaries, and possible indications of non-background planetary-mass candidates around HIP 77911. We did not find any CBP within 300 AU, which implies a frequency upper limit on CBPs (1--15 MJupM_{\rm Jup}) of 6--10 % between 30-300 AU. Coupling these observations with an archival dataset for a total of 163 stellar pairs, we find a best-fit CBP frequency of 1.9 % (2--15 MJupM_{\rm Jup}) between 1--300 AU with a 10.5 % upper limit at a 95 % confidence level. This result is consistent with the distribution of companions around single stars.Comment: 27 pages, 13 Figures, 7 Tables. Accepted for publication in A&

    The K2-ESPRINT Project III: A Close-in Super-Earth around a Metal-rich Mid-M Dwarf

    Get PDF
    We validate a Rp=2.32±0.24R⊕R_p=2.32\pm 0.24R_\oplus planet on a close-in orbit (P=2.260455±0.000041P=2.260455\pm 0.000041 days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near infrared, low-resolution spectroscopy, and high-resolution adaptive-optics (AO) imaging. We perform a global fit to all the observed transits using a Gaussian process-based method and show that the transit depths in all passbands adopted for the ground-based transit follow-ups (r2′,zs,2,J,H,Ksr'_2, z_\mathrm{s,2}, J, H, K_\mathrm{s}) are within ∼2σ\sim 2\sigma of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imaging, we estimate the probability that a background eclipsing binary could cause a false positive to be <2×10−5< 2\times 10^{-5}. We also show that K2-28 cannot have a physically associated companion of stellar type later than M4, based on the measurement of almost identical transit depths in multiple passbands. There is a low probability for a M4 dwarf companion (≈0.072−0.04+0.02\approx 0.072_{-0.04}^{+0.02}), but even if this were the case, the size of K2-28b falls within the planetary regime. K2-28b has the same radius (within 1σ1\sigma) and experiences a similar irradiation from its host star as the well-studied GJ~1214b. Given the relative brightness of K2-28 in the near infrared (mKep=14.85m_\mathrm{Kep}=14.85 mag and mH=11.03m_H=11.03 mag) and relatively deep transit (0.6−0.7%0.6-0.7\%), a comparison between the atmospheric properties of these two planets with future observations would be especially interesting.Comment: 11 pages, 9 figures, accepted to Ap

    Evidence for Spin–Orbit Alignment in the TRAPPIST-1 System

    Get PDF
    In an effort to measure the Rossiter–McLaughlin effect for the TRAPPIST-1 system, we performed high-resolution spectroscopy during transits of planets e, f, and b. The spectra were obtained with the InfraRed Doppler spectrograph on the Subaru 8.2 m telescope, and were supplemented with simultaneous photometry obtained with a 1 m telescope of the Las Cumbres Observatory Global Telescope. By analyzing the anomalous radial velocities, we found the projected stellar obliquity to be λ = 1 ± 28° under the assumption that the three planets have coplanar orbits, although we caution that the radial-velocity data show correlated noise of unknown origin. We also sought evidence for the expected deformations of the stellar absorption lines, and thereby detected the "Doppler shadow" of planet b with a false-alarm probability of 1.7%. The joint analysis of the observed residual cross-correlation map including the three transits gave λ = 19_(-15)^(+13)°. These results indicate that the the TRAPPIST-1 star is not strongly misaligned with the common orbital plane of the planets, although further observations are encouraged to verify this conclusion

    CHARIS Science: Performance Simulations for the Subaru Telescope's Third-Generation of Exoplanet Imaging Instrumentation

    Full text link
    We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared JJ, HH, and KK bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few λ/D\lambda/D, corresponding to ∼\sim0.\!\!''1. SCExAO will also offer contrast approaching 10−510^{-5} at similar separations, ∼\sim0.\!\!''1--0.\!\!''2. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to ∼\sim20 AU, observations of ∼\sim200 mostly young, nearby stars targeted by existing high-contrast instruments might find ∼\sim1--3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of R∼75R \sim 75, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and κ\kappa And b.Comment: 13 pages, 7 figures, proceedings from SPIE Montrea

    High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b

    Full text link
    Terrestrial exoplanets orbiting M-dwarf stars are promising targets for transmission spectroscopy with existing or near-future instrumentation. The atmospheric composition of such rocky planets remains an open question, especially given the high X-ray and ultraviolet flux from their host M dwarfs that can drive atmospheric escape. The 1.3 R⊕R_\oplus exoplanet GJ 486b (Teq∼T_{\rm{eq}} \sim 700 K), orbiting an M3.5 star, is expected to have one of the strongest transmission spectroscopy signals among known terrestrial exoplanets. We observed three transits of GJ 486b using three different high-resolution spectrographs: IRD on Subaru, IGRINS on Gemini-South, and SPIRou on the Canada-France-Hawai'i Telescope. We searched for atmospheric absorption from a wide variety of molecular species via the cross-correlation method, but did not detect any robust atmospheric signals. Nevertheless, our observations are sufficiently sensitive to rule out several clear atmospheric scenarios via injection and recovery tests, and extend comparative exoplanetology into the terrestrial regime. Our results suggest that GJ 486b does not possess a clear H2_2/He-dominated atmosphere, nor a clear 100% water-vapor atmosphere. Other secondary atmospheres with high mean molecular weights or H2_2/He-dominated atmospheres with clouds remain possible. Our findings provide further evidence suggesting that terrestrial planets orbiting M-dwarf stars may experience significant atmospheric loss.Comment: Accepted for publication in A

    Planet(esimal)s Around Stars with TESS (PAST) III: A Search for Triplet He I in the Atmospheres of Two 200 Myr-old Planets

    Full text link
    We report a search for excess absorption in the 1083.2 nm line of ortho (triplet) helium during transits of TOI-1807b and TOI-2076b, 1.25 and 2.5REarth_{\rm Earth} planets on 0.55- and 10.4-day orbits around nearby ∼\sim200~Myr-old K dwarf stars. We limit the equivalent width of any transit-associated absorption to <<4 and <<8 mA, respectively. We limit the escape of solar-composition atmospheres from TOI-1807b and TOI-2076b to ≲\lesssim1 and ≲\lesssim0.1MEarth_{\rm Earth} Gyr−1^{-1}, respectively, depending on wind temperature. The absence of a H/He signature for TOI-1807b is consistent with a measurement of mass indicating a rocky body and the prediction by a hydrodynamic model that any H-dominated atmosphere would be unstable and already have been lost. Differential spectra obtained during the transit of TOI-2076b contain a He I-like feature, but this closely resembles the stellar line and extends beyond the transit interval. Until additional transits are observed, we suspect this to be the result of variation in the stellar He I line produced by rotation of active regions and/or flaring on the young, active host star. Non-detection of escape could mean that TOI-2076b is more massive than expected, the star is less EUV-luminous, the models overestimate escape, or the planet has a H/He-poor atmosphere that is primarily molecules such as H2_2O. Photochemical models of planetary winds predict a semi-major axis at which triplet He I observations are most sensitive to mass loss: TOI-2076b orbits near this optimum. Future surveys could use a distance criterion to increase the yield of detections.Comment: Accepted to MNRA
    • …
    corecore