86 research outputs found

    Steam Oxidation of Silicon Carbide at High Temperatures for the Application as Accident Tolerant Fuel Cladding, an Overview

    Get PDF
    Since the nuclear accident at Fukushima Daiichi Nuclear Power Station in 2011, a considerable number of studies have been conducted to develop accident tolerant fuel (ATF) claddings for safety enhancement of light water reactors. Among many potential ATF claddings, silicon carbide is one of the most promising candidates with many superior features suitable for nuclear applications. In spite of many potential benefits of SiC cladding, there are some concerns over the oxidation/corrosion resistance of the cladding, especially at extreme temperatures (up to 2000 °C) in severe accidents. However, the study of SiC steam oxidation in conventional test facilities in water vapor atmospheres at temperatures above 1600 °C is very challenging. In recent years, several efforts have been made to modify existing or to develop new advanced test facilities to perform material oxidation tests in steam environments typical of severe accident conditions. In this article, the authors outline the features of SiC oxidation/corrosion at high temperatures, as well as the developments of advanced test facilities in their laboratories, and, finally, give some of the current advances in understanding based on recent data obtained from those advanced test facilities

    Phase segregated Cu₂₋ₓSe/Ni₃Se₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts

    Get PDF
    Control over the composition and nanostructure of solid electrocatalysts is quite important for drastic improvement of their performance. The cation exchange reaction of nanocrystals (NCs) has been reported as the way to provide metastable crystal structures and complicated functional nanostructures that are not accessible by conventional synthetic methods. Herein we demonstrate the cation exchange-derived formation of metastable spinel Ni₃Se₄NCs (sp-Ni₃Se₄) and phase segregated berzelianite Cu₂₋ₓSe (ber-Cu₂₋ₓSe)/sp-Ni₃Se₄ heterostructured NCs as active oxygen evolution reaction (OER) catalysts. A rare sp-Ni₃Se₄ phase was formed by cation exchange of ber-Cu₂₋ₓSe NCs with Ni²⁺ ions, because both phases have the face-centered cubic (fcc) Se anion sublattice. Tuning the Ni : Cu molar ratio leads to the formation of Janus-type ber-Cu₂₋ₓSe/sp-Ni₃Se₄ heterostructured NCs. The NCs of sp-Ni₃Se₄ and ber-Cu₂₋ₓSe/sp-Ni₃Se₄ heterostructures exhibited high catalytic activities in the OER with small overpotentials of 250 and 230 mV at 10 mA cm⁻² in 0.1 M KOH, respectively. They were electrochemically oxidized during the OER to give hydroxides as the real active species. We anticipate that the cation exchange reaction could have enormous potential for the creation of novel heterostructured NCs showing superior catalytic performance

    Diagnostic Value of DCE-MRI for Differentiating Malignant Adnexal Masses Compared with Contrast-enhanced-T1WI

    Get PDF
    Purpose: To compare the diagnostic performance of dynamic contrast-enhanced-MR (DCE-MR) and delayed contrast-enhanced (CE)-MRI added to unenhanced MRI, including diffusion weighted image (DWI) for differentiating malignant adnexal tumors, conducting a retrospective blinded image interpretation study. Methods: Data of 80 patients suspected of having adnexal tumors by ultrasonography between April 2008 and August 2018 were used for the study. All patients had undergone preoperative MRI and surgical resection at our institution. Four radiologists (two specialized in gynecological radiology and two non-specialized) were enrolled for blinded review of the MR images. A 3-point scale was used: 0 = benign, 1 = indeterminate, and 2 = malignant. Three imaging sets were reviewed: Set A, unenhanced MRI including DWI; Set B, Set A and delayed CE-T1WI; and Set C, Set A and DCE-MRI. Imaging criteria for benign and malignant tumors were given in earlier reports. The diagnostic performance of the three imaging sets of the four readers was calculated. Their areas under the curve (AUCs) were compared using the DeLong method. Results: Accuracies of Set B were 81%–88%. Those of Set C were 81%–85%. The AUCs of Set B were 0.83 and 0.89. Those of Set C were 0.81–0.86. For two readers, Set A showed lower accuracy and AUC than Set B/Set C (less than 0.80), although those were equivalent in other readers. No significant difference in AUCs was found among the three sequence sets. Intrareader agreement was moderate to almost perfect in Sets A and B, and substantial to almost perfect in Set C. Conclusion: DCE-MR showed no superiority for differentiating malignant adnexal tumors from benign tumors compared to delayed CE-T1WI with conventional MR and DWI

    On the EU-Japan roadmap for experimental research on corium behavior

    Get PDF
    A joint research roadmap between Europe and Japan has been developed in severe accident field of light water reactors, focusing particularly on reactor core melt (corium) behavior. The development of this roadmap is one of the main targets of the ongoing EU project SAFEST. This paper presents information about ongoing severe accident studies in the area of corium behavior, rationales and comparison of research priorities identified in different projects and documents, expert ranking of safety issues, and finally the research areas and topics and their priorities suggested for the EU-Japan roadmap and future bilateral collaborations. These results provide useful guidelines for (i) assessment of long-term goals and proposals for experimental support needed for proper understanding, interpretation and learning lessons of the Fukushima accident; (ii) analysis of severe accident phenomena; (iii) development of accident prevention and mitigation strategies, and corresponding technical measures; (iv) study of corium samples in European and Japanese laboratories; and (v) preparation of Fukushima site decommissioning

    Administration of Kampo medicine through a tube at an advanced critical care center

    Get PDF
    In emergency and critical care medical centers, tube administration is employed for patients who have difficulty swallowing oral drugs owing to decreased consciousness or mechanical ventilation. However, tube clogging due to drug injection is a concern. We compared the crushing method with the simple suspension method for the passage of amlodipine, an antihypertensive drug, in combination with rikkunshito, which has been used to treat upper gastrointestinal disorders such as functional dyspepsia and gastroesophageal reflux in emergency and critical care medical centers, to ascertain the effect of Kampo products on the passage of other drugs during tube administration. When the crushing method was employed, poorly water-soluble solid products were formed, while a uniformly dispersed suspension was obtained using the simple suspension method. In addition, the passage rate of amlodipine through the tube was 64% and 93% in the crushing and simple suspension methods, respectively, thereby indicating that the simple suspension method provided more favorable than the crushing method. The results of this study suggested that the passage rate of amlodipine for patients who received Kampo products concurrently was higher when the simple suspension method was used, and an appropriate drug amount might well be able to administered to patients using this method

    Research and Development Methodology for Practical Use of Accident Tolerant Fuel in Light Water Reactors

    Get PDF
    Research and development (R&D) methodology for the practical use of accident tolerant fuel (ATF) in commercial light water reactors is discussed in the present review. The identification and quantification of the R&D-metrics and the attribute of candidate ATF-concepts, recognition of the gap between the present R&D status and the targeted practical use, prioritization of the R&D, and technology screening schemes are important for achieving a common understanding on technology screening process among stakeholders in the near term and in developing an efficient R&D track toward practical use. Technology readiness levels and attribute guides are considered to be proper indices for these evaluations. In the midterm, the selected ATF-concepts will be developed toward the technology readiness level-5, at which stage the performance of the prototype fuel rods and the practicality of industrial scale fuel manufacturing will be verified and validated. Regarding the screened-out concepts, which are recognized to have attractive potentials, the fundamental R&D should be continued in the midterm to find ways of addressing showstoppers
    corecore