30 research outputs found

    VAV2 and VAV3 as Candidate Disease Genes for Spontaneous Glaucoma in Mice and Humans

    Get PDF
    Background: Glaucoma is a leading cause of blindness worldwide. Nonetheless, the mechanism of its pathogenesis has not been well-elucidated, particularly at the molecular level, because of insufficient availability of experimental genetic animal models. Methodology/Principal Findings: Here we demonstrate that deficiency of Vav2 and Vav3, guanine nucleotides exchange factors for Rho guanosine triphosphatases, leads to an ocular phenotype similar to human glaucoma. Vav2/Vav3-deficient mice, and to a lesser degree Vav2-deficient mice, show early onset of iridocorneal angle changes and elevated intraocular pressure, with subsequent selective loss of retinal ganglion cells and optic nerve head cupping, which are the hallmarks of glaucoma. The expression of Vav2 and Vav3 tissues was demonstrated in the iridocorneal angle and retina in both mouse and human eyes. In addition, a genome-wide association study screening glaucoma susceptibility loci using single nucleotide polymorphisms analysis identified VAV2 and VAV3 as candidates for associated genes in Japanese open-angle glaucoma patients. Conclusions/Significance: Vav2/Vav3-deficient mice should serve not only as a useful murine model of spontaneous glaucoma, but may also provide a valuable tool in understanding of the pathogenesis of glaucoma in humans, particularly the determinants of altered aqueous outflow and subsequent elevated intraocular pressure

    Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice

    Get PDF
    Glaucoma is one of the leading causes of bilateral blindness affecting nearly 8 million people worldwide. Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) and is often associated with elevated intraocular pressure (IOP). However, patients with normal tension glaucoma (NTG), a subtype of primary open-angle glaucoma (POAG), develop the disease without IOP elevation. The molecular pathways leading to the pathology of NTG and POAG are still unclear. Here, we describe the phenotypic characteristics of transgenic mice overexpressing wild-type (Wt) or mutated optineurin (Optn). Mutations E50K, H486R and Optn with a deletion of the first (amino acids 153–174) or second (amino acids 426–461) leucine zipper were used for overexpression. After 16 months, histological abnormalities were exclusively observed in the retina of E50K mutant mice with loss of RGCs and connecting synapses in the peripheral retina leading to a thinning of the nerve fiber layer at the optic nerve head at normal IOP. E50K mice also showed massive apoptosis and degeneration of entire retina, leading to approximately a 28% reduction of the retina thickness. At the molecular level, introduction of the E50K mutation disrupts the interaction between Optn and Rab8 GTPase, a protein involved in the regulation of vesicle transport from Golgi to plasma membrane. Wt Optn and an active GTP-bound form of Rab8 complex were localized at the Golgi complex. These data suggest that alternation of the Optn sequence can initiate significant retinal degeneration in mice

    Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population

    Get PDF
    Age-related macular degeneration (AMD) is a common cause of blindness in the elderly. Caucasian patients are predominantly affected by the dry form of AMD, whereas Japanese patients have predominantly the wet form of AMD and/or polypoidal choroidal vasculopathy (PCV). Although genetic association in the 10q26 (ARMS2/HTRA1) region has been established in many ethnic groups for dry-type AMD, typical wet-type AMD, and PCV, the contribution of the 1q32 (CFH) region seem to differ among these groups. Here we show a single nucleotide polymorphism (SNP) in the ARMS2/HTRA1 locus is associated in the whole genome for Japanese typical wet-type AMD (rs10490924: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}p=4.1×104 p = 4.1 \times 10 ^{ - 4}\end{document}, OR = 4.16) and PCV (rs10490924: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}p=3.7×108 p = 3.7 \times 10 ^{ -8}\end{document}, OR = 2.72) followed by CFH (rs800292: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}p=7.4×105 p = 7.4 \times 10 ^{ -5}\end{document}, OR = 2.08; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}p=2.6×104 p = 2.6 \times {10^{ - 4}} \end{document}, OR = 2.00), which differs from previous studies in Caucasian populations. Moreover, a SNP (rs2241394) in complement component C3 gene showed significant association with PCV (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}p=2.5×103 p = 2.5 \times {10^{ - 3}} \end{document}, OR = 3.47). We conclude that dry-type AMD, typical wet-type AMD, and PCV have both common and distinct genetic risks that become apparent when comparing Japanese versus Caucasian populations
    corecore