1,150 research outputs found
Cluster synchronization in an ensemble of neurons interacting through chemical synapses
In networks of periodically firing spiking neurons that are interconnected
with chemical synapses, we analyze cluster state, where an ensemble of neurons
are subdivided into a few clusters, in each of which neurons exhibit perfect
synchronization. To clarify stability of cluster state, we decompose linear
stability of the solution into two types of stabilities: stability of mean
state and stabilities of clusters. Computing Floquet matrices for these
stabilities, we clarify the total stability of cluster state for any types of
neurons and any strength of interactions even if the size of networks is
infinitely large. First, we apply this stability analysis to investigating
synchronization in the large ensemble of integrate-and-fire (IF) neurons. In
one-cluster state we find the change of stability of a cluster, which
elucidates that in-phase synchronization of IF neurons occurs with only
inhibitory synapses. Then, we investigate entrainment of two clusters of IF
neurons with different excitability. IF neurons with fast decaying synapses
show the low entrainment capability, which is explained by a pitchfork
bifurcation appearing in two-cluster state with change of synapse decay time
constant. Second, we analyze one-cluster state of Hodgkin-Huxley (HH) neurons
and discuss the difference in synchronization properties between IF neurons and
HH neurons.Comment: Notation for Jacobi matrix is changed. Accepted for publication in
Phys. Rev.
Chaos synchronization in gap-junction-coupled neurons
Depending on temperature the modified Hodgkin-Huxley (MHH) equations exhibit
a variety of dynamical behavior including intrinsic chaotic firing. We analyze
synchronization in a large ensemble of MHH neurons that are interconnected with
gap junctions. By evaluating tangential Lyapunov exponents we clarify whether
synchronous state of neurons is chaotic or periodic. Then, we evaluate
transversal Lyapunov exponents to elucidate if this synchronous state is stable
against infinitesimal perturbations. Our analysis elucidates that with weak gap
junctions, stability of synchronization of MHH neurons shows rather complicated
change with temperature. We, however, find that with strong gap junctions,
synchronous state is stable over the wide range of temperature irrespective of
whether synchronous state is chaotic or periodic. It turns out that strong gap
junctions realize the robust synchronization mechanism, which well explains
synchronization in interneurons in the real nervous system.Comment: Accepted for publication in Phys. Rev.
The Mixed State of Charge-Density-Wave in a Ring-Shaped Single Crystals
Charge-density-wave (CDW) phase transition in a ring-shaped crystals,
recently synthesized by Tanda et al. [Nature, 417, 397 (2002)], is studied
based on a mean-field-approximation of Ginzburg-Landau free energy. It is shown
that in a ring-shaped crystals CDW undergoes frustration due to the curvature
(bending) of the ring (geometrical frustration) and, thus, forms a mixed state
analogous to what a type-II superconductor forms under a magnetic field. We
discuss the nature of the phase transition in the ring-CDW in relation to
recent experiments.Comment: 6 pages, 4 figure
On the Canonical Formalism for a Higher-Curvature Gravity
Following the method of Buchbinder and Lyahovich, we carry out a canonical
formalism for a higher-curvature gravity in which the Lagrangian density is given in terms of a function of the salar curvature as . The local Hamiltonian is obtained by a
canonical transformation which interchanges a pair of the generalized
coordinate and its canonical momentum coming from the higher derivative of the
metric.Comment: 11 pages, no figures, Latex fil
Domain-wall structure of a classical Heisenberg ferromagnet on a Mobius strip
We study theoretically the structure of domain walls in ferromagnetic states
on Mobius strips. A two-dimensional classical Heisenberg ferromagnet with
single-site anisotropy is treated within a mean-field approximation by taking
into account the boundary condition to realize the Mobius geometry. It is found
that two types of domain walls can be formed, namely, parallel or perpendicular
to the circumference, and that the relative stability of these domain walls is
sensitive to the change in temperature and an applied magnetic field. The
magnetization has a discontinuity as a function of temperature and the external
field.Comment: 7 pages, 10 figures; published versio
Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur
We present a near-infrared image of UY Aur, a 0.9" separated binary system,
using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope.
Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the
full width at half maximum of the point spread function, the highest achieved.
By comparison with previous measurements, we estimated that the orbital period
is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed
H-band magnitude of the secondary varies by as much as 1.3 mag within a decade,
while that of the primary is rather stable. This inconstancy may arise from
photospheric variability caused by an uneven accretion rate or from the
rotation of the secondary. We detected a half-ring shaped circumbinary disk
around the binary with a bright southwest part but a barely detectable
northeast portion. The brightness ratio is ~57. Its inner radius and
inclination are about 520 AU and 42, respectively. The disk is not uniform but
has remarkable features, including a clumpy structure along the disk,
circumstellar material inside the inner cavity, and an extended armlike
structure. The circumstellar material inside the cavity probably corresponds to
a clump or material accreting from the disk onto the binary. The armlike
structure is a part of the disk, created by the accretion from the outer region
of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A
Oscillator neural network model with distributed native frequencies
We study associative memory of an oscillator neural network with distributed
native frequencies. The model is based on the use of the Hebb learning rule
with random patterns (), and the distribution function of
native frequencies is assumed to be symmetric with respect to its average.
Although the system with an extensive number of stored patterns is not allowed
to get entirely synchronized, long time behaviors of the macroscopic order
parameters describing partial synchronization phenomena can be obtained by
discarding the contribution from the desynchronized part of the system. The
oscillator network is shown to work as associative memory accompanied by
synchronized oscillations. A phase diagram representing properties of memory
retrieval is presented in terms of the parameters characterizing the native
frequency distribution. Our analytical calculations based on the
self-consistent signal-to-noise analysis are shown to be in excellent agreement
with numerical simulations, confirming the validity of our theoretical
treatment.Comment: 9 pages, revtex, 6 postscript figures, to be published in J. Phys.
The Discovery of a Very Narrow-Line Star Forming Obat a Redshift of 5.66ject
We report on the discovery of a very narrow-line star forming object beyond
redshift of 5. Using the prime-focus camera, Suprime-Cam, on the 8.2 m Subaru
telescope together with a narrow-passband filter centered at
= 8150 \AA with passband of = 120 \AA, we have obtained a very
deep image of the field surrounding the quasar SDSSp J104433.04012502.2 at a
redshift of 5.74. Comparing this image with optical broad-band images, we have
found an object with a very strong emission line. Our follow-up optical
spectroscopy has revealed that this source is at a redshift of
, forming stars at a rate
yr. Remarkably, the velocity dispersion of Ly-emitting gas is
only 22 km s. Since a blue half of the Ly emission could be
absorbed by neutral hydrogen gas, perhaps in the system, a modest estimate of
the velocity dispersion may be 44 km s. Together with a linear
size of 7.7 kpc, we estimate a lower limit of the dynamical mass
of this object to be . It is thus suggested that
LAE J10440123 is a star-forming dwarf galaxy (i.e., a subgalactic object or
a building block) beyond redshift 5 although we cannot exclude a possibility
that most Ly emission is absorbed by the red damping wing of neutral
intergalactic matter.Comment: 6 pages, 2 figures. ApJ Letters, in pres
Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the
spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting
transition temperature Tc of ~3 K. We have investigated the field-temperature
(H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to
the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have
found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual
temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have
also investigated the dependence of Hc2 on the angle between the field and the
ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass
model apparently fails to reproduce the angle dependence, particularly near H
// c and at low temperatures. We propose that all of these charecteric features
can be explained, at least in a qualitative fashion, on the basis of a theory
by Sigrist and Monien that assumes surface superconductivity with a
two-component order parameter occurring at the interface between Sr2RuO4 and Ru
inclusions. This provides evidence of the chiral state postulated for the 1.5-K
phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
Comprehensive analysis of liver and blood miRNA in precancerous conditions
Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6–12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker
- …