21 research outputs found

    Trace metal speciation at the sediment-water interface of Vidy Bay: influence of contrasting sediment characteristics

    Get PDF
    Trace metal analysis and speciation were performed at the sediment-water interface of Vidy Bay (Lake Geneva, Switzerland). This bay is impacted by hazardous compounds released via the sewage effluent of a major wastewater treatment plant (WWTP). Sediment cores and overlying water were sampled simultaneously at 12 sites characterized by contrasting sediment surface characteristics (color, methanogenic activity, bacterial mat) using corers deployed from a MIR submarine or research boat. The concentrations of trace metals in particulate form in the sediment and dissolved in the interstitial water, as well as the particulate, colloidal and dynamic fractions of trace metals in the overlying water were determined by combining an in situ and laboratory multi-method analytical approach. The results indicate differences in trace metal speciation in the sediment and overlying water at the 12 investigated sites. The observed differences were found to be more correlated to bacterial community, abundance, type and activity than to distance from the WWTP sewage outlet

    Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria

    Get PDF
    Lake sediments in areas close to the outlet of wastewater treatment plants are sinks for pollutants. Bacterial communities in sediments are likely affected by the released effluents, but in turn they might modify the distribution and bioavailability of pollutants. On the shore of Lake Geneva, Switzerland, wastewater from the City of Lausanne is treated and discharged into the lake via an outlet pipe in the Vidy Bay. The objectives of this study were to assess (1) the impact of the treated wastewater release on the bacterial communities in the Vidy Bay sediments and (2) the potential link between bacterial communities and trace metal sediment content. Bacterial community composition and abundance were assessed in sediments collected in three areas with different levels of contamination. The main factors affecting bacterial communities were inferred by linking biological data with chemical analyses on these sediments. Near to the outlet pipe, large quantities of bacterial cells were detected in the three upper most cm (3.2 × 109 cells assessed by microscopy and 1.7 × 1010 copies of the 16S rRNA gene assessed by quantitative PCR, per gram of wet sediment), and the dominant bacterial groups were those typically found in activated sludge (e.g. Acidovorax defluivii and Hydrogenophaga caeni). Three samples in an area further away from the outlet and one sample close to it were characterized by 50 % of endospore-forming Firmicutes (Clostridium spp.) and a clear enrichment in trace metal content. These results highlight the potential role of endospore-forming Firmicutes on transport and deposition of trace metals in sediments

    Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria

    Get PDF
    Lake sediments in areas close to the outlet of wastewater treatment plants are sinks for pollutants. Bacterial communities in sediments are likely affected by the released effluents, but in turn they might modify the distribution and bioavailability of pollutants. On the shore of Lake Geneva, Switzerland, wastewater from the City of Lausanne is treated and discharged into the lake via an outlet pipe in the Vidy Bay. The objectives of this study were to assess (1) the impact of the treated wastewater release on the bacterial communities in the Vidy Bay sediments and (2) the potential link between bacterial communities and trace metal sediment content. Bacterial community composition and abundance were assessed in sediments collected in three areas with different levels of contamination. The main factors affecting bacterial communities were inferred by linking biological data with chemical analyses on these sediments. Near to the outlet pipe, large quantities of bacterial cells were detected in the three upper most cm (3.2×109 cells assessed by microscopy and 1.7×1010 copies of the 16S rRNA gene assessed by quantitative PCR, per gram of wet sediment), and the dominant bacterial groups were those typically found in activated sludge (e.g. Acidovorax defluivii and Hydrogenophaga caeni). Three samples in an area further away from the outlet and one sample close to it were characterized by 50% of endospore-forming Firmicutes (Clostridium spp.) and a clear enrichment in trace metal content. These results highlight the potential role of endospore-forming Firmicutes on transport and deposition of trace metals in sediments

    Voltammetric Detection of Hg2+ Using Peptide-Functionalized Polymer Brushes

    No full text
    Polymer brushes grafted by surface-initiated atom transfer radical polymerization (SI-ATRP) from the surface of Ir-based microelectrode arrays are explored as a platform for the fabrication of sensory coatings for the voltammetric detection of Hg2+. The polymer brush coatings are post-modified with a metallothionein derived peptide to enable the selective detection of Hg2+. The performance of the polymer brush modified microelectrode arrays was evaluated using both cyclic voltammetry (CV) as well as square-wave anodic stripping voltammetry (SWASV) experiments. These studies revealed that the polymer brush based coatings allowed the selective detection of Hg2+ with detection limits in the subnanomolar range

    Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    Get PDF
    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and detected simultaneously by using square wave anodic stripping voltammetry (SWASV). The reliability of this sensor for the simultaneous measurement of copper, lead and cadmium has been studied by a series of replicate laboratory tests. The proportionality between the voltammetric peak current intensity and the free metal ion concentrations in solution has been demonstrated by using malonate as a model ligand. Finally, the CGIME sensor was applied to the Cu and Pb free concentration measurement in sea water samples and the results compared to the free metal ion concentrations measured using hollow fiber based permeation liquid membrane (HF-PLM) coupled to inductively coupled plasma mass spectrophotometer (ICP-MS). Comparable concentration values were found for both metals with both techniques allowing to validate the CGIME measurements in complex media

    On-Chip Antifouling Gel-Integrated Microelectrode Arrays for In Situ High-Resolution Quantification of the Nickel Fraction Available for Bio-Uptake in Natural Waters

    No full text
    We aimed to monitor in situ nickel (Ni(II)) concentrations in aquatic systems in the nanomolar range. To achieve this, we investigated whether an analytical protocol for the direct quantification of cobalt (Co(II)) using adsorptive cathodic sweep voltammetry (Ad-CSV) on antifouling gel-integrated microelectrode arrays (GIME) we recently developed is also suitable for direct Ni(II) quantification. The proposed protocol consists of the reduction of the complex formed between Ni(II) (or Ni(II) and Co(II)) and nioxime adsorbed on the surface of the GIME-sensing element. The GIME enables to (i) avoid fouling, (ii) control the metal complex mass transport and, when interrogated by Ad-CSV, (iii) selectively determine the dynamic (kinetically labile Ni-nioxime) fraction that is potentially bioavailable. The nioxime concentration and pH were optimized. A temperature correction factor was determined. The limit of detection established for 90 s of accumulation time was 0.43 ± 0.06 in freshwater and 0.34 ± 0.02 nM in seawater. The sensor was integrated in a submersible probe in which the nioxime-containing buffer and the sample were mixed automatically. In situ field measurements at high resolution were successfully achieved in Lake Geneva during a diurnal cycle. The determination of the kinetically labile Ni-nioxime fraction allows one to estimate the potential ecotoxicological impact of Ni(II) in Lake Geneva. Additional Ni fractions were measured by ICP-MS and coupled to the in situ Ad-CSV data to determine the temporal Ni(II) speciation

    On-Chip Antifouling Gel-Integrated Microelectrode Arrays for In Situ High-Resolution Quantification of the Nickel Fraction Available for Bio-Uptake in Natural Waters

    No full text
    We aimed to monitor in situ nickel (Ni(II)) concentrations in aquatic systems in the nanomolar range. To achieve this, we investigated whether an analytical protocol for the direct quantification of cobalt (Co(II)) using adsorptive cathodic sweep voltammetry (Ad-CSV) on antifouling gel-integrated microelectrode arrays (GIME) we recently developed is also suitable for direct Ni(II) quantification. The proposed protocol consists of the reduction of the complex formed between Ni(II) (or Ni(II) and Co(II)) and nioxime adsorbed on the surface of the GIME-sensing element. The GIME enables to (i) avoid fouling, (ii) control the metal complex mass transport and, when interrogated by Ad-CSV, (iii) selectively determine the dynamic (kinetically labile Ni-nioxime) fraction that is potentially bioavailable. The nioxime concentration and pH were optimized. A temperature correction factor was determined. The limit of detection established for 90 s of accumulation time was 0.43 ± 0.06 in freshwater and 0.34 ± 0.02 nM in seawater. The sensor was integrated in a submersible probe in which the nioxime-containing buffer and the sample were mixed automatically. In situ field measurements at high resolution were successfully achieved in Lake Geneva during a diurnal cycle. The determination of the kinetically labile Ni-nioxime fraction allows one to estimate the potential ecotoxicological impact of Ni(II) in Lake Geneva. Additional Ni fractions were measured by ICP-MS and coupled to the in situ Ad-CSV data to determine the temporal Ni(II) speciation

    Direct Optical Carbon Dioxide Sensing Based on a Polymeric Film Doped with a Selective Molecular Tweezer-Type Ionophore

    No full text
    A novel optical method for the determination of CO<sub>2</sub> concentration in aqueous and gaseous samples of plasticized PVC film is presented. The detection principle makes use of a direct molecular recognition of the carbonate ion by a molecular tweezer-type ionophore, which has previously been demonstrated to exhibit excellent carbonate selectivity. The carbonate ion is extracted together with hydrogen ions into a polymeric film that contains the anion exchanger tridodecylmethylammonium chloride, a lipophilic, electrically charged, and highly basic pH indicator, which is used for the readout in absorbance mode, in addition to the lipophilic carbonate ionophore. According to known bulk optode principles, such an optical sensor responds to the product of the carbonate ion activity and the square of hydrogen ion activity. This quantity is thermodynamically linked to the activity of carbon dioxide. This allows one to realize a direct carbon dioxide sensor that does not make use of the traditional Severinghaus sensing principle of measuring a pH change upon CO<sub>2</sub> equilibration across a membrane. A selectivity analysis shows that common ions such as chloride are sufficiently suppressed for direct <i>P</i>CO<sub>2</sub> measurements in freshwater samples at pH 8. Chloride interference, however, is too severe for direct seawater measurements at the same pH. This may be overcome by placing a gas-permeable membrane over the optode sensing film. This is conceptually confirmed by establishing that the sensor is equally useful for gas-phase <i>P</i>CO<sub>2</sub> measurements. As expected, humid air samples are required for proper sensor functioning, as dry CO<sub>2</sub> gas will not cause any signal change. The sensor showed acceptable response times and good reproducibility under both conditions
    corecore