8 research outputs found

    Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996

    No full text
    Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates

    Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile sepsis Model

    No full text
    Abstract Genetic ablation or pharmacologic inhibition of matrix metalloproteinase-8 (MMP8) improves survival in an adult murine sepsis model. Because developmental age influences the host inflammatory response, we hypothesized that developmental age influences the role of MMP8 in sepsis. First, we compared sepsis survival between wild-type (WT, C57BL/6) and MMP8 null juvenile-aged mice (12–14 d) after intraperitoneal injection of a standardized cecal slurry. Second, peritoneal lavages collected 6 h and 18 h after cecal slurry injection were analyzed for bacterial burden, leukocyte subsets and inflammatory cytokines. Third, juvenile WT mice were pretreated with an MMP8 inhibitor prior to cecal slurry injection; analysis of their bacterial burden was compared with vehicle-injected animals. Fourth, the phagocytic capacity of WT and MMP8 null peritoneal macrophages was compared. Finally, peritoneal neutrophil extracellular traps (NETs) were compared using immunofluorescent imaging and quantitative image analysis. We found that juvenile MMP8 null mice had greater mortality and higher bacterial burden than WT mice. Leukocyte counts and cytokine concentrations in the peritoneal fluid were increased in the MMP8 null mice relative to the wild-type mice. Peritoneal macrophages from MMP8 null mice had reduced phagocytic capacity compared to WT macrophages. There was no quantitative difference in NET formation, but fewer bacteria were adherent to NETs from MMP8 null animals. In conclusion, in contrast to septic adult mice, genetic ablation of MMP8 increased mortality following bacterial peritonitis in juvenile mice. This increase in mortality was associated with reduced bacterial clearance and reduced NET efficiency. We conclude that developmental age influences the role of MMP8 in sepsis
    corecore