406 research outputs found

    Endogenous and Inhaled Nitric Oxide for the Treatment of Pulmonary Hypertension

    Get PDF
    Since the discovery of nitric oxide (NO) as a physiological substance produced in the endothelium, the impairment of endothelial NO production and reactivity of the pulmonary vasculature to NO have been described in animal models and patients with pulmonary hypertension (PH). The NO synthase-NO-cyclic guanosine monophosphate (cGMP) pathway is impaired in pulmonary arterial hypertension (PAH), pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Pioneering clinicians conceived that NO can be administered to the lung by inhalation and used this strategy to treat PH in humans and acute hypoxic PH in animal models. Inhaled NO (iNO) selectively decreases pulmonary arterial pressure with no changes in systemic arterial pressure. When iNO diffuses into the blood, it is converted to NO3−, thereby losing its vasodilatory effects. NO might then be recycled in hypoxic remote organs, where NO3− and NO2− are reduced to NO. In the present chapter, the metabolic fate of iNO, based on previous air pollution research in Japan, is discussed. Then, we describe recent clinical applications of iNO in pediatric patients with various diseases, including bronchopulmonary dysplasia (BPD), persistent PH of neonates, and congenital diaphragmatic hernia (CDH). We also summarize the role of iNO in the catheterization lab, including acute vasoreactivity testing to assess prognosis, indications for specific PH therapy, and operability of congenital heart disease

    Immunoliposomes bearing polyethyleneglycol-coupled Fab′ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo

    Get PDF
    AbstractWe have developed a new type of long-circulating immunoliposome (Fab′–PEG immunoliposomes) which is efficiently extravasated into the targeted solid tumor in vivo. Small unilamellar liposomes (100–130 nm in diameter) were prepared from distearoylphosphatidylcholine (DSPC), cholesterol (CHOL) and a dipalmitoylphosphatidylethanolamine derivative of PEG with a terminal maleimidyl group (DPPE-PEG-Mal), and conjugated Fab′ fragment of antibody. Inclusion of DPPE-PEG-Mal and linkage of the Fab′ fragment instead of intact antibody to PEG terminals allowed the liposomes to evade RES uptake and remain in the circulation for a long time, resulting in enhanced accumulation of the liposomes in the solid tumor. Because of the ability of such Fab′–PEG immunoliposomes to target solid tumors, they appear highly attractive as carriers of not only chemotherapeutic agents, but also of macromolecular drugs

    Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions

    Get PDF
    Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that Oryza sativa CCCH‐tandem zinc finger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions

    Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity

    Get PDF
    Killer cell lectin-like receptor G1 (KLRG1) is an inhibitory receptor expressed on subsets of natural killer (NK) cells and T cells, for which no endogenous ligands are known. Here, we show that KLRG1 binds three of the classical cadherins (E-, N-, and R-), which are ubiquitously expressed in vertebrates and mediate cell–cell adhesion by homotypic or heterotypic interactions. By expression cloning using the mouse KLRG1 tetramer as a probe, we identified human E-cadherin as a xenogeneic ligand. We also identified a syngeneic interaction between mouse KLRG1 and mouse E-cadherin. Furthermore, we show that KLRG1 binds N- and R-cadherins. Finally, we demonstrate that E-cadherin binding of KLRG1 prevents the lysis of E-cadherin–expressing targets by KLRG1+ NK cells. These results suggest that KLRG1 ligation by E-, N-, or R-cadherins may regulate the cytotoxicity of killer cells to prevent damage to tissues expressing the cadherins

    Involvement of activated transcriptional process in efficient gene transfection using unmodified and mannose-modified bubble lipoplexes with ultrasound exposure.

    Get PDF
    Recently, our group developed ultrasound (US)-responsive and mannose-modified gene carriers (Man-PEG(2000) bubble lipoplexes), and successfully obtained a high level of gene expression in mannose receptor-expressing cells following gene transfection using Man-PEG(2000) bubble lipoplexes and US exposure. We also reported that large amounts of plasmid DNA (pDNA) were transferred into the cytoplasm of the targeted cells in the gene transfection using this method. In the present study, we investigated the involvement of transcriptional processes on enhanced gene expression obtained by unmodified and Man-PEG(2000) bubble lipoplexes with US exposure. The transcriptional process related to activator protein-1 (AP-1) and nuclear factor-κB (NFκB) was activated by US exposure, and was founded to be involved in enhanced gene expression obtained by gene transfection using unmodified and Man-PEG(2000) bubble lipoplexes with US exposure. On the other hand, activation of AP-1 and NFκB pathways followed by US exposure was hardly involved in the inflammatory responses in the gene transfection using this method. These findings suggest that activation of AP-1 and NFκB followed by US exposure is involved in the enhanced gene expression using unmodified and Man-PEG(2000) bubble lipoplexes with US exposure, and the selection of pDNAs activated by US exposure is important in this gene transfection method
    corecore