187 research outputs found

    Tobacco\u27s Minor Alkaloids: Effects on Place Conditioning and Nucleus Accumbens Dopamine Release in Adult and Adolescent Rats

    Get PDF
    Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated

    RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability

    Get PDF
    P21, a cyclin-dependent kinase inhibitor, plays a pivotal role in the cell-cycle regulation in response to stress stimuli. P21 expression is highly regulated through transcriptional, post-transcriptional and post-translational mechanisms. Previously, we and others showed that p21 expression is regulated through p21 mRNA stability by RNPC1, a target of the p53 family and HuR, a member of the ELAV family RNA-binding proteins. HuR carries three highly conserved RNA recognition motifs (RRMs) whereas RNPC1 carries one. Here we found that the ability of RNPC1 to regulate p21 mRNA stability is dependent on HuR. We also found that RNPC1 and HuR physically interact, and the RRM domain in RNPC1 and RRM3 in HuR are necessary for their interaction. Interestingly, we found that RNPC1 and HuR, both of which can bind AU-rich elements (AREs) in p21 3′-UTR, preferentially bind the upstream and downstream AREs, respectively. Finally, we showed that the RNA-binding activity of HuR to p21 transcript was enhanced by RNPC1 in vitro and in vivo. Together, we hypothesize that RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability

    Ti6Al4V metal cutting chip formation experiments and modelling over a wide range of cutting speeds

    Get PDF
    Measured forces, chip geometry and tool temperatures from machining a mill annealed Ti6Al4V at cutting speeds mainly from 1 to 100 m/min, but in some cases down to 0.1 m/min, are reported, as well as mechanical testing of the material. Finite element simulations with inputs the measured flow stress, and subsequently a small high temperature strain hardening recovery correction, and a failure model calibrated from the cutting tests at speeds from 1 to 10 m/min, give satisfactory agreement with the higher speed tests once surface strain hardening and damage from the previous pass of the tool are taken into account. This paper’s originality is firstly to show that more complicated flow stress models involving large strain softening are not needed provided shear failure is included; and secondly its failure model: this proposes a non-zero failed shear stress depending on local pressure and temperature. The simulations provide relations between tool mechanical and thermal loading and cutting conditions to aid process improvement

    Finite element modeling of 3D turning of titanium

    Full text link
    The finite element modeling and experimental validation of 3D turning of grade two commercially pure titanium are presented. The Third Wave AdvantEdge machining simulation software is applied for the finite element modeling. Machining experiments are conducted. The measured cutting forces and chip thickness are compared to finite element modeling results with good agreement. The effects of cutting speed, a limiting factor for productivity in titanium machining, depth of cut, and tool cutting edge radius on the peak tool temperature are investigated. This study explores the use of 3D finite element modeling to study the chip curl. Reasonable agreement is observed under turning with small depth of cut. The chip segmentation with shear band formation during the Ti machining process is investigated. The spacing between shear bands in the Ti chip is comparable with experimental measurements. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of titanium machining.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45846/1/170_2005_Article_2511.pd

    CD133 Is a Marker of Bioenergetic Stress in Human Glioma

    Get PDF
    Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho0 or ρ0, are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these ρ0 cells display the ability to form “tumor spheroids” in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, ρ0 cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to ρ0 cells resulting in stable trans-mitochondrial “cybrid” clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised

    Morphogenesis of the T4 tail and tail fibers

    Get PDF
    Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR
    corecore