140 research outputs found

    Design and realization of a multisamples rotating high cycle fatigue machine

    Get PDF
    In this work the design and the technical characteristic of a Moore rotating bending machine are presented. The machine has been realized at the University of Cassino in order to run tests on multiple specimens at different temperature. The user can choose independently the load and the temperature for each specimen. The machine has been designed to produce in short time a several numbers of data of materials fatigue strength at low costs. The machine is in assembling step at the Laboratory of Industrial Design of the University of Cassino

    Integration of reverse engineering and ultrasonic non-contact testing procedures for quality assessment of CFRP aeronautical components

    Get PDF
    Abstract Nowadays, the quality assurance of aeronautical components is a very crucial issue. Diverse defects can be generated during composite material components manufacturing such as voids, delamination, cracks, etc. The identification of these defects requires the use of different types of inspection methods. In this paper, two diverse non-contact inspection techniques, i.e. a laser-based reverse engineering method and an ultrasonic testing procedure, are integrated to provide a complete quality assessment of carbon fibre reinforced polymer components for applications in the aeronautical field. A custom made software code was developed in order to create a user interface allowing for the visualization and analysis of the reverse engineering and ultrasonic information for the detection of geometrical and internal flaws of the component under inspection

    Design and realization of a multisamples rotating high cycle fatigue machine

    Get PDF
    In this work the design and the technical characteristic of a Moore rotating bending machine are presented. The machine has been realized at the University of Cassino in order to run tests on multiple specimens at different temperature. The user can choose independently the load and the temperature for each specimen. The machine has been designed to produce in short time a several numbers of data of materials fatigue strength at low costs. The machine is in assembling step at the Laboratory of Industrial Design of the University of Cassino

    Design and realization of a multisamples rotating high cycle fatigue machine

    Get PDF
    In this work the design and the technical characteristic of a Moore rotating bending machine are presented. The machine has been realized at the University of Cassino in order to run tests on multiple specimens at different temperature. The user can choose independently the load and the temperature for each specimen. The machine has been designed to produce in short time a several numbers of data of materials fatigue strength at low costs. The machine is in assembling step at the Laboratory of Industrial Design of the University of Cassino

    Oxygen control and improved denitrification efficiency by dosing ferrous ions in the anoxic reactor

    Get PDF
    Small concentrations of dissolved oxygen (DO) in the range 0.2–0.4 mg L−1 normally are present in biological pre-denitrification reactors. This situation causes adverse effects on denitrification rate and, consequently, on the process efficiency. The results presented show the possibility to control the DO in the anoxic reactor by dosing ferrous Fe(II) ions. The experiments were carried out on both batch samples and a pilot plant and proved that oxidation of Fe(II) to Fe(III) is very efficient in the DO control. Moreover, Fe(III) reacts with phosphorus which recipitates as ferric orthophosphate. A dose of 6 mgFe2+ L−1 decreased the mean DO concentration from 0.45 to 0.28 mg L−1; as a consequence, the denitrification efficiency (ηDEN) increased from about 65–77%. ηDEN reached up to 89% with 9 mgFe2+ L−1 (50% over the stoichiometric for phosphorus removal) thanks to an average DO concentration of 0.08 mgO2 L−1 in the denitrification stage. The results also highlighted the strong influence of DO (and consequently the dosage of Fe2+) on the specific denitrification rate suggesting to maintain DO concentration in the pre-denitrification reactors lower than 0.2 mg L−1 in order to achieve high operation efficiencies

    Virtual shimming simulation for smart assembly of aircraft skin panels based on a physics-driven digital twin

    Get PDF
    A leading challenge in the assembly process of aircraft skin panels is the precise control of part-to-part gaps to avoid excessive pre-tensions of the fastening element which, if exceeded, impair the durability and the response under dynamics loads of the whole skin assembly. The current practice is to measure the gap in specific points of the assembly with parts already at their final location, and then be-spoke shims are machined and inserted between the mating components to fill the gap. This process involves several manual measurement-fit-adjust quality loops, such as loading parts on the assembly frame, measuring gaps, off-loading parts, adding be-spoke shims and re-positioning parts ready for the fastening operation—as a matter of fact, the aircraft is re-assembled at least twice and therefore the current practice has been proved highly cost and time ineffective. Additionally, the gap measurement relies on manual gauges which are inaccurate and unable to follow the actual 3D profile of the gap. Taking advantage of emerging tools such as in-line measurement systems and large-scale physics-based simulations, this paper proposes a novel methodology to predict the part-to-part gap and therefore minimise the need for multiple quality loops. The methodology leverages a physics-driven digital twin model of the skin assembly process, which combines a physical domain (in-line measurements) and a digital domain (physics-based simulation). Central to the methodology is the variation model of the multi-stage assembly process via a physics-based simulation which allows to capture the inherent deformation of the panels and the propagation of variations between consecutive assembly stages. The results were demonstrated during the assembly process of a vertical stabiliser for commercial aircraft, and findings showed a significant time saving of 75% by reducing costly and time-consuming measurement-fit-adjust quality loops

    The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer

    Get PDF
    Purpose - This study aims to quantify the ultimate tensile strength and the nominal strain at break (f) of printed parts made from polylactic acid (PLA) with a Replicating Rapid prototyper (Rep-Rap) 3D printer, by varying three important process parameters: layer thickness, infill orientation and the number of shell perimeters. Little information is currently available about mechanical properties of parts printed using open-source, low-cost 3D printers. Design/methodology/approach - A computer-aided design model of a tensile test specimen was created, conforming to the ASTM:D638. Experiments were designed, based on a central composite design. A set of 60 specimens, obtained from combinations of selected paramers, was printed on a Rep-Rap Prusa I3 in PLA. Testing was performed using a JJ Instruments - T5002-type tensile testing machine and the load was measured using a load cell of 1,100 N. Findings - This study investigated the main impact of each process parameter on mechanical properties and the effects of interactions. The use of a response surface methodology allowed the proposition of an empirical model which connects process parameters and mechanical properties. Even though results showed a high variability, additional ideas on how to understand the impact of process parameters are suggested in this paper. Originality/value - On the basis of experimental results, it is possible to obtain practical suggestions to set common process parameters in relation to mechanical properties. Experiments discussed in the present paper provide a variety of data and insight regarding the relationship among the main process parameters and the stiffness and strength of fused deposition modeling-printed parts made from PLA. In particular, this paper underlines the shortage in existing literature concerning the impact of process parameters on the elastic modulus and the strain to failure for the PLA. The experimental data produced show a good degree of compliance with analytical formulations and other data found in literature.Peer reviewe

    Novel concepts and strategies in skull base reconstruction after endoscopic endonasal surgery

    Get PDF
    Recently, a variety of craniofacial approaches has been adopted to enter the skull base, among those, the endonasal endoscopic technique. An effective watertight thereafter: the reconstruction can be performed using different materials, both autologous and non-autologous, individually or combined in a multilayer fashion. The current study was focused on the development of new advanced devices and techniques, aiding in reducing postoperative CSF leak rate. Additive manufacturing allows the design of devices with tailored structural and functional features and, as well, injectable semi-IPNs and composites; therefore specific mechanical/rheological and injectability studies are valuable. Accordingly, we propose new additive-manufactured and injectable devices
    • …
    corecore