97 research outputs found
Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function
RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression.
We thank Dr. Shiva Malek and her colleagues (Genentech Inc.) for sharing their results with us before publication. We also thank M. San Roman, R. Villar, M.C. Gonzalez, A. Lopez, N. Cabrera, P. Villanueva, J. Condo, O. Dominguez, and S. Ortega for excellent technical support. This work was supported by grants from the European Research Council (ERC-2015-AdG/695566, THERACAN); the Spanish Ministry of Science, Innovation, and Universities (RTC-2017-6576-1 and RTI2018094664-B-I00) and the Autonomous Community of Madrid (B2017/BMD-3884 iLUNG-CM) to M.B., as well as by a grant from the Spanish Ministry of Science, Innovation and Universities (RTI2018-094664-B-I00) to M.B. and M.M. M.B. is a recipient of an Endowed Chair from the AXA Research Fund. M.S., P.N., and F.F.-G. were supported by FPU fellowships from the Spanish Ministry of Education. L.E.-B. was a recipient of an FPI fellowship from the Spanish Ministry of Economy and Competitiveness. S.G.-A. is a recipient of a postdoctoral fellowship from the Asociacion Espanola Contra el Cancer (AECC).S
An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe
Multiple cancer pathways regulate telomere protection
Telomeres are considered as universal anti-cancer targets, as telomere maintenance is essential to sustain indefinite cancer growth. Mutations in telomerase, the enzyme that maintains telomeres, are among the most frequently found in cancer. In addition, mutations in components of the telomere protective complex, or shelterin, are also found in familial and sporadic cancers. Most efforts to target telomeres have focused in telomerase inhibition; however, recent studies suggest that direct targeting of the shelterin complex could represent a more effective strategy. In particular, we recently showed that genetic deletion of the TRF1 essential shelterin protein impairs tumor growth in aggressive lung cancer and glioblastoma (GBM) mouse models by direct induction of telomere damage independently of telomere length. Here, we screen for TRF1 inhibitory drugs using a collection of FDA-approved drugs and drugs in clinical trials, which cover the majority of pathways included in the Reactome database. Among other targets, we find that inhibition of several kinases of the Ras pathway, including ERK and MEK, recapitulates the effects of Trf1 genetic deletion, including induction of telomeric DNA damage, telomere fragility, and inhibition of cancer stemness. We further show that both bRAF and ERK2 kinases phosphorylate TRF1 in vitro and that these modifications are essential for TRF1 location to telomeres in vivo Finally, we use these new TRF1 regulatory pathways as the basis to discover novel drug combinations based on TRF1 inhibition, with the goal of effectively blocking potential resistance to individual drugs in patient-derived glioblastoma xenograft models.We thank the Confocal Microscopy, Protein Engineering, Mass Spectrometry,Comparative Pathology, and Mouse Facility Units at CNIO. MAB laboratory is funded by SAF 2013-45111-R from MINECO,Fundación Botín
and Banco Santander, Worldwide Cancer Research 16-1177. LB is a fellow of the La Caixa-Severo Ochoa International PhD Programme.S
An allosteric cross-talk between the activation loop and the ATP binding site regulates the activation of Src kinase
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe
Modulation of telomere protection by the PI3K/AKT pathway
Telomeres and the insulin/PI3K pathway are considered hallmarks of aging and cancer. Here, we describe a role for PI3K/AKT in the regulation of TRF1, an essential component of the shelterin complex. PI3K and AKT chemical inhibitors reduce TRF1 telomeric foci and lead to increased telomeric DNA damage and fragility. We identify the PI3Kα isoform as responsible for this TRF1 inhibition. TRF1 is phosphorylated at different residues by AKT and these modifications regulate TRF1 protein stability and TRF1 binding to telomeric DNA in vitro and are important for in vivo TRF1 telomere location and cell viability. Patient-derived breast cancer PDX mouse models that effectively respond to a PI3Kα specific inhibitor, BYL719, show decreased TRF1 levels and increased DNA damage. These findings functionally connect two of the major pathways for cancer and aging, telomeres and the PI3K pathway, and pinpoint PI3K and AKT as novel targets for chemical modulation of telomere protection.We are indebted to D. Megias for microscopy analysis, to D. Calvo for protein purification as well as to J. Muñoz and F. García for LC/MS/MS analysis. The research was funded by project SAF2013-45111-R of Societal Changes Program of the Spanish Ministry of Economics and Competitiveness (MINECO) co-financed through the European Fund of Regional Development (FEDER), Fundación Botín, Banco Santander (Santander Universities Global Division) and Worldwide Cancer Research (WCR 16-1177).S
Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas.
KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.We thank S. Ortega for the generation of the Cdk4FxKD mouse model; and M. San Roman, R. Villar, M. C. Gonzalez, A. Lopez, N. Cabrera, P. Villanueva, J. Condo, J. Klett, A. Cebria, A. Otero, O. Dominguez, G. Luengo, G. Garaulet, F. Mulero, and D. Megias for excellent technical support. This work was supported by European Research Council Grant ERC-2015-AdG/695566, THERACAN, Spanish Ministry of Science, Innovation, and Universities Grant RTC-2017-6576-1, and the Autonomous Community of Madrid Grant B2017/BMD-3884 iLUNG-CM (to M.B.); Spanish Ministry of Science, Innovation, and Universities Grant RTI2018-094664B-I00 (to M.B. and M.M.); and National Natural Science Foundation of China Grant 31771469 (to H.W.). M.B. is a recipient of an Endowed Chair from the AXA Research Fund. L.E.-B. is the recipient of an FPI fellowship from the Spanish Ministry of Economy and Competitiveness. F.F.-G., M.S., and P.N. were supported by an FPU fellowships from the Spanish Ministry of Education.S
Characterisation of a non-pathogenic and non-protective infectious rabbit lagovirus related to RHDV
The existence of non-pathogenic RHDV strains was established when a non-lethal virus named rabbit
calicivirus (RCV) was characterised in 1996 in Italy. Since then, different RNA sequences related to RHDV have
been detected in apparently healthy domestic and wild rabbits, and recently a new lagovirus was identified in
Australia. We have characterised from seropositive healthy domestic rabbits a non-lethal lagovirus that differs
from RHDV in terms of pathogenicity, tissue tropism and capsid protein sequence. Phylogenetic analyses have
revealed that it is close to the Ashington strain and to the RCV, but distinct. We proved experimentally that it
is infectious but non-pathogenic and demonstrated that, contrary to the other described non-pathogenic
lagoviruses, it induces antibodies that do not protect against RHDV. Our results indicate the existence of a
gradient of cross-protection between circulating strains, from non-protective, partially protective to
protective strains, and highlight the extent of diversity within the genus Lagovirus
Efficacy of VP2 protein expressed in E. coli for protection against highly virulent infectious bursal disease virus
The ability of a heat-inactivated whole virus from a highly virulent infectious bursal disease virus (hvIBDV) and VP2 protein from hvIBDV expressed in E. coli provided protection against a hvIBDV challenge in specific-pathogen-free (SPF) chickens. Six out of seven chickens that were injected three times with crude VP2 protein developed significant antibody titer against IBDV. However, only four out of the seven chickens survived the hvIBDV challenge. Despite showing low antibody titer profiles, all chickens immunized with the heat-inactivated whole virus also survived the challenged with hvIBDV. However, all of these chickens had bursal atrophy and mild to moderate depletion of lymphocytes. Thus, antibodies raised against IBDV VP2 protein expressed in E. coli and denatured IBDV proteins induced some degree of protection against mortality but not against bursal damage following challenge with hvIBDV
A review of African horse sickness and its implications for Ireland
African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst ‘very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (‘medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus
- …