54,548 research outputs found
A strategy for the design of skyrmion racetrack memories
Magnetic storage based on racetrack memory is very promising for the design
of ultra-dense, low-cost and low-power storage technology. Information can be
coded in a magnetic region between two domain walls or, as predicted recently,
in topological magnetic objects known as skyrmions. Here, we show the
technological advantages and limitations of using Bloch and Neel skyrmions
manipulated by spin current generated within the ferromagnet or via the
spin-Hall effect arising from a non-magnetic heavy metal underlayer. We found
that the Neel skyrmion moved by the spin-Hall effect is a very promising
strategy for technological implementation of the next generation of skyrmion
racetrack memories (zero field, high thermal stability, and ultra-dense
storage). We employed micromagnetics reinforced with an analytical formulation
of skyrmion dynamics that we developed from the Thiele equation. We identified
that the excitation, at high currents, of a breathing mode of the skyrmion
limits the maximal velocity of the memory
Efficient and Effective Query Auto-Completion
Query Auto-Completion (QAC) is an ubiquitous feature of modern textual search
systems, suggesting possible ways of completing the query being typed by the
user. Efficiency is crucial to make the system have a real-time responsiveness
when operating in the million-scale search space. Prior work has extensively
advocated the use of a trie data structure for fast prefix-search operations in
compact space. However, searching by prefix has little discovery power in that
only completions that are prefixed by the query are returned. This may impact
negatively the effectiveness of the QAC system, with a consequent monetary loss
for real applications like Web Search Engines and eCommerce. In this work we
describe the implementation that empowers a new QAC system at eBay, and discuss
its efficiency/effectiveness in relation to other approaches at the
state-of-the-art. The solution is based on the combination of an inverted index
with succinct data structures, a much less explored direction in the
literature. This system is replacing the previous implementation based on
Apache SOLR that was not always able to meet the required
service-level-agreement.Comment: Published in SIGIR 202
Exact Quantum States for all Two-Dimensional Dilaton Gravity Theories
It is shown that the recently obtained quantum wave functionals in terms of
the CJZ variables for generic 2d dilaton gravity are equivalent to the
previously reported exact quantum wave functionals in geometrical variables. A
third representation of these exact quantum states is also presented
AB responses: from bare nucleons to complex nuclei
We study the occurrence of factorization in polarized and unpolarized
observables in coincidence quasi-elastic electron scattering. Starting with the
relativistic distorted wave impulse approximation, we reformulate the effective
momentum approximation and show that the latter leads to observables which
factorize under some specific conditions. Within this framework, the role
played by final state interactions and, in particular, by the spin-orbit term
is explored. Connection with the nonrelativistic formalism is studied in depth.
Numerical results are presented to illustrate the analytical derivations and to
quantify the differences between factorized and unfactorized approaches.Comment: 26 pages, 5 figures. Improved and extended version. To be published
in Phys. Rev.
The luminosity function of Palomar 5 and its tidal tails
We present the main sequence luminosity function of the tidally disrupted
globular cluster Palomar 5 and its tidal tails. For this work we analyzed
imaging data obtained with the Wide Field Camera at the INT (La Palma) and data
from the Wide Field Imager at the MPG/ESO 2.2 m telescope at La Silla down to a
limiting magnitude of approximately 24.5 mag in B. Our results indicate that
preferentially fainter stars were removed from the cluster so that the LF of
the cluster's main body exhibits a significant degree of flattening compared to
other GCs. This is attributed to its advanced dynamical evolution. The LF of
the tails is, in turn, enhanced with faint, low-mass stars, which we interpret
as a consequence of mass segregation in the cluster.Comment: 4 pages, 3 figures, to be published in the proceedings of the
conference "Satellites and tidal streams" held at La Palma, Canary Islands,
May 26 - 30, 200
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
We study the light emission from quantum emitter and double metallic
nanoshell hybrid systems. Quantum emitters act as local sources which transmit
their light efficiently due to a double nanoshell near field. The double
nanoshell consists a dielectric core and two outer nanoshells
VLT and GTC observations of SDSS J0123+00: a type 2 quasar triggered in a galaxy encounter?
We present long-slit spectroscopy, continuum and [OIII]5007 imaging data
obtained with the Very Large Telescope and the Gran Telescopio Canarias of the
type 2 quasar SDSS J0123+00 at z=0.399. The quasar lies in a complex, gas-rich
environment. It appears to be physically connected by a tidal bridge to another
galaxy at a projected distance of ~100 kpc, which suggests this is an
interacting system. Ionized gas is detected to a distance of at least ~133 kpc
from the nucleus. The nebula has a total extension of ~180 kpc. This is one of
the largest ionized nebulae ever detected associated with an active galaxy.
Based on the environmental properties, we propose that the origin of the nebula
is tidal debris from a galactic encounter, which could as well be the
triggering mechanism of the nuclear activity. SDSS J0123+00 demonstrates that
giant, luminous ionized nebulae can exist associated with type 2 quasars of low
radio luminosities, contrary to expectations based on type 1 quasar studies.Comment: 6 pages, 5 figures. Accepted for publication in MNRAS Letter
- …