1,435 research outputs found

    Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer

    Get PDF
    The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment

    The Rho family GEF FARP2 is activated by aPKC iota to control tight junction formation and polarity

    Get PDF
    The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a ‘RIPR’ motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain–kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6–aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι−FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors

    Building Babies - Chapter 16

    Get PDF
    In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1) Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg

    Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D serum levels have been found to be related to sun exposure and diet, together with cell differentiation, growth control and consequently, cancer risk. Vitamin D receptor (<it>VDR</it>) genotypes may influence cancer risk; however, no epidemiological studies in sporadic breast cancer (BC) or malignant melanoma (MM) have been performed in a southern European population. In this study, the <it>VDR </it>gene has been evaluated in two epithelial cancers BC and MM.</p> <p>Methods</p> <p>We have conducted an analysis in 549 consecutive and non-related sporadic BC cases and 556 controls, all from the Spanish population, and 283 MM cases and 245 controls. Genotyping analyses were carried out on four putatively functional SNPs within the <it>VDR </it>gene.</p> <p>Results</p> <p>An association with the minor allele A of the non-synonymous SNP rs2228570 (rs10735810, <it>Fok</it>I, Met1Thr) was observed for BC, with an estimated odds ratio (OR) of 1.26 (95% CI = 1.02–1.57; p = 0.036). The synonymous variant rs731236 (<it>Taq</it>I) appeared to be associated with protection from BC (OR = 0.80, 95%CI = 0.64–0.99; p = 0.047). No statistically significant associations with MM were observed for any SNP. Nevertheless, sub-group analyses revealed an association between rs2228570 (<it>FokI</it>) and absence of childhood sunburns (OR = 0.65, p = 0.003), between the 3'utr SNP rs739837 (<it>Bgl</it>I) and fair skin (OR = 1.31, p = 0.048), and between the promoter SNP rs4516035 and the more aggressive tumour location in head-neck and trunk (OR = 1.54, p = 0.020).</p> <p>Conclusion</p> <p>In summary, we observed associations between SNPs in the <it>VDR </it>gene and BC risk, and a comprehensive analysis using clinical and tumour characteristics as outcome variables has revealed potential associations with MM. These associations required confirmation in independent studies.</p

    Analysis of Aurora kinase A expression in CD34+ blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia

    Get PDF
    Aurora kinase A, also known as aurora A, is a serine/threonine kinase that plays critical roles in mitosis entry, chromosome alignment, segregation, and cytokinesis. Overexpression of aurora A has been observed in many solid tumors and some hematopoietic neoplasms, but little is known about its expression in myeloid diseases. Because cytogenetic abnormalities play an essential role in the pathogenesis of myeloid malignancies, we hypothesized that aurora A deregulation may be involved in myelodysplastic syndromes and acute myeloid leukemia and contribute to the chromosomal instability observed in these diseases. We assessed aurora A mRNA levels in CD34+ bone marrow blasts from nine patients with acute myeloid leukemia, 20 patients with myelodysplastic syndromes, and five normal patients serving as controls. CD34+ blasts were isolated from bone marrow aspirate specimens using magnetic activated cell separation technology. RNA was extracted from purified CD34+ cells, and quantitative real-time reverse transcriptase polymerase chain reaction for aurora A was performed. Immunocytochemical analyses for total aurora A, phosphorylated aurora A, Ki-67, and activated caspase 3 were performed on cytospin slides made from purified CD34+ cells in myelodysplastic syndrome patients using standard methods. Aurora A mRNA and protein levels were correlated, as was aurora A mRNA level, with blast counts, cytogenetic abnormalities, and International Prognostic Scoring System score. We found that CD34+ cells in myelodysplastic syndromes and acute myeloid leukemia expressed aurora A at significantly higher levels (P = 0.01 and P = 0.01, respectively) than normal CD34+ cells. Aurora A mRNA levels correlated with total and phosphorylated protein levels (P = 0.0002 and P = 0.02, respectively). No significant correlation was found between aurora A mRNA level and blast count, blast viability, cytogenetic abnormalities, or the International Prognostic Scoring System score in patients with myelodysplastic syndromes. We conclude that aurora A is up-regulated in CD34+ blasts from myeloid neoplasms

    Cross-species amplification of 41 microsatellites in European cyprinids: A tool for evolutionary, population genetics and hybridization studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyprinids display the most abundant and widespread species among the European freshwater Teleostei and are known to hybridize quite commonly. Nevertheless, a limited number of markers for conducting comparative differentiation, evolutionary and hybridization dynamics studies are available to date.</p> <p>Findings</p> <p>Five multiplex PCR sets were optimized in order to assay 41 cyprinid-specific polymorphic microsatellite loci (including 10 novel loci isolated from <it>Chondrostoma nasus nasus, Chondrostoma toxostoma toxostoma </it>and <it>Leuciscus leuciscus</it>) for 503 individuals (440 purebred specimens and 63 hybrids) from 15 European cyprinid species. The level of genetic diversity was assessed in <it>Alburnus alburnus, Alburnoides bipunctatus, C. genei, C. n. nasus, C. soetta, C. t. toxostoma, L. idus, L. leuciscus, Pachychilon pictum, Rutilus rutilus, Squalius cephalus </it>and <it>Telestes souffia</it>. The applicability of the markers was also tested on <it>Abramis brama, Blicca bjoerkna </it>and <it>Scardinius erythrophtalmus </it>specimens. Overall, between 24 and 37 of these markers revealed polymorphic for the investigated species and 23 markers amplified for all the 15 European cyprinid species.</p> <p>Conclusions</p> <p>The developed set of markers demonstrated its performance in discriminating European cyprinid species. Furthermore, it allowed detecting and characterizing hybrid individuals. These microsatellites will therefore be useful to perform comparative evolutionary and population genetics studies dealing with European cyprinids, what is of particular interest in conservation issues and constitutes a tool of choice to conduct hybridization studies.</p

    Erythropoietin: A potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE

    Get PDF
    Background: Beneficial effects of short-term erythropoietin (EPO) theraphy have been demonstrated in several animal models of acute neurologic injury, including experimental autoimmune encephalomyelitis(EAE)-the animal model of multiple sclerosis. We have found that EPO treatment substantially reduces the acute clinical paralysis seen EAE mice and this improvements is accompanied by a large reduction in the mononuclear cell infiltration and downregulation of glial MHC class II expression within the inflamed CNS. Other reports have recently indicated that peripherally generated anti-inflammatory CD4 +Foxp3 3 regulatory T cells (Tregs) and the IL17-producing CD4+ T helper cell (Th17) subpopulations play key antagonistic roles in EAE pathogenesis. However, no information regardind the effects of EPO theraphy on the behavior of the general mononuclear-lymphocyte population, Tregs or Th17 cells in EAE has emerged. Methods and Findings: We first determined in vivo that EPO theraphy markedly suppressed MOG specific T cell proliferation and sharply reduced the number of reactive dendritic cells (CD11c positive) in EAE lumph modes during both inductive and later symptomatic phases of MOG 35-55 induced EAE. We then determined the effect in vivo of EPO on numbers of peripheral Treg cells and Th17 cells. We found that EPO treatment modulated immune balance in both the periphery and the inflamed spinal cord by promoting a large expansion in Treg cells, inhibiting Th17 polarization and abrogating proliferation of the antigen presenting dendritic cell population. Finally we utilized tissue culture assays to show that exposure to EPO in vitro similarly downregulated MOG-specific T cell proliferation and also greatly suppressed T cell production of pro-inflammatory cytokines. Conclusions: Taken together, our findings reveal an important new locus whereby EPO induces substantial long-term tissue protection in the host through signalling to several critical subsets of immune cells that reside in the peripheral lymphatic system.published_or_final_versio

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19
    corecore