2,542 research outputs found

    Ivermectina y Warfarina: Un Potencial Peligro para la Salud Pública Peruana

    Get PDF
    Letter to the Editor (without abstract)Carta al editor ( Sin resumen

    Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation

    Get PDF
    233294Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos-expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer.We thank Drs. N. Djouder, M. Petruzzelli, R. Ricci, F.X Real, K.D. Bissig, and members of the Wagner laboratory for critical reading of the manuscript and valuable sugges- tions; Dr. H. Schönthaler for help with the bioinformatics analysis; V. Bermeo for technical help; and G. Luque, S. Leceta, and G. Medrano for assisting with mouse experiments. The E.F. Wagner laboratory is supported by grants from the Spanish Ministry of Economy, Industry, and Competitiveness (BFU2012-40230 and SAF2015-70857, co- funded by the European Regional Development Fund), a European Research Council– advanced grant (ERC-FCK/2008/37), and Worldwide Cancer Research (13-0216). R. Hamacher was supported by the Deutsche Forschungsgemeinschaft (HA 6068/1-1), M.K. Thomsen by AUFF Nova, and S.C. Hasenfuss by a Boehringer Ingelheim Fonds PhD fellowship. The authors declare no competing financial interests. Author contributions: L. Bakiri and R. Hamacher designed and performed exper- iments, analyzed data, prepared figures, and wrote the manuscript. O. Graña analyzed RNA-seq and public microarray data, A. Guío-Carrión provided expert technical assis- tance, R. Campos-Olivas acquired and analyzed NMR data, L. Martinez analyzed flow cytometry data, M.K. Thomsen performed experiments with human cell lines, S.C. Hasenfuss performed experiments with primary hepatocytes and data mining, and H.P. Dienes performed pathological analysis on tissue sections. E.F. Wagner directed the study, approved the data, and wrote and edited the paper. All authors read and commented on the manuscript.S

    Excess years of life lost to COVID-19 and other causes of death by sex, neighbourhood deprivation, and region in England and Wales during 2020: A registry-based study

    Get PDF
    BackgroundDeaths in the first year of the Coronavirus Disease 2019 (COVID-19) pandemic in England and Wales were unevenly distributed socioeconomically and geographically. However, the full scale of inequalities may have been underestimated to date, as most measures of excess mortality do not adequately account for varying age profiles of deaths between social groups. We measured years of life lost (YLL) attributable to the pandemic, directly or indirectly, comparing mortality across geographic and socioeconomic groups.Methods and findingsWe used national mortality registers in England and Wales, from 27 December 2014 until 25 December 2020, covering 3,265,937 deaths. YLLs (main outcome) were calculated using 2019 single year sex-specific life tables for England and Wales. Interrupted time-series analyses, with panel time-series models, were used to estimate expected YLL by sex, geographical region, and deprivation quintile between 7 March 2020 and 25 December 2020 by cause: direct deaths (COVID-19 and other respiratory diseases), cardiovascular disease and diabetes, cancer, and other indirect deaths (all other causes). Excess YLL during the pandemic period were calculated by subtracting observed from expected values. Additional analyses focused on excess deaths for region and deprivation strata, by age-group. Between 7 March 2020 and 25 December 2020, there were an estimated 763,550 (95% CI: 696,826 to 830,273) excess YLL in England and Wales, equivalent to a 15% (95% CI: 14 to 16) increase in YLL compared to the equivalent time period in 2019. There was a strong deprivation gradient in all-cause excess YLL, with rates per 100,000 population ranging from 916 (95% CI: 820 to 1,012) for the least deprived quintile to 1,645 (95% CI: 1,472 to 1,819) for the most deprived. The differences in excess YLL between deprivation quintiles were greatest in younger age groups; for all-cause deaths, a mean of 9.1 years per death (95% CI: 8.2 to 10.0) were lost in the least deprived quintile, compared to 10.8 (95% CI: 10.0 to 11.6) in the most deprived; for COVID-19 and other respiratory deaths, a mean of 8.9 years per death (95% CI: 8.7 to 9.1) were lost in the least deprived quintile, compared to 11.2 (95% CI: 11.0 to 11.5) in the most deprived. For all-cause mortality, estimated deaths in the most deprived compared to the most affluent areas were much higher in younger age groups, but similar for those aged 85 or over. There was marked variability in both all-cause and direct excess YLL by region, with the highest rates in the North West. Limitations include the quasi-experimental nature of the research design and the requirement for accurate and timely recording.ConclusionsIn this study, we observed strong socioeconomic and geographical health inequalities in YLL, during the first calendar year of the COVID-19 pandemic. These were in line with long-standing existing inequalities in England and Wales, with the most deprived areas reporting the largest numbers in potential YLL

    Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA

    Get PDF
    Background Current noninvasive assays have limitations in the early detection of colorectal cancer. We evaluated the clinical utility of promoter methylation of the long noncoding RNA LINC00473 as a noninvasive biomarker to detect colorectal cancer and associated precancerous lesions. Methods We evaluated the epigenetic regulation of LINC00473 through promoter hypermethylation in colorectal cancer cell lines using bisulfite genomic sequencing and expression analyses. DNA methylation of LINC00473 was analyzed in primary colorectal tumors using 450K arrays and RNA-seq from The Cancer Genome Atlas (TCGA). Tissue-based findings were validated in several independent cohorts of colorectal cancer and advanced colorectal polyp patients by pyrosequencing. We explored the clinical utility of LINC00473 methylation for the early detection of colorectal cancer in plasma cell-free DNA by quantitative methylation-specific PCR and droplet digital PCR. Results LINC00473 showed transcriptionally silencing due to promoter hypermethylation in colorectal cancer cell lines and primary tumors. Methylation of the LINC00473 promoter accurately detected primary colorectal tumors in two independent clinical cohorts, with areas under the receiver operating characteristic curves (AUCs) of 0.94 and 0.89. This biomarker also identified advanced colorectal polyps from two other tissue-based clinical cohorts with high diagnostic accuracy (AUCs of 0.99 and 0.78). Finally, methylation analysis of the LINC00473 promoter in plasma cell-free DNA accurately identified patients with colorectal cancer and advanced colorectal polyps (AUCs of 0.88 and 0.84, respectively), which was confirmed in an independent cohort of patients. Conclusions Hypermethylation of the LINC00473 promoter is a new promising biomarker for noninvasive early detection of colorectal cancer and related precancerous lesions

    The crown pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758)

    Get PDF
    Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species' unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.A.G.-d.-S. was funded by the Portuguese Foundation for Science and Technology (FCT) under the grants SFRH/BD/137935/2018, EF (CEECIND/00627/2017) and MLL (2020.03608.CEECIND). This research was developed under ConBiomics: the missing approach for the Conservation of freshwater Bivalves Project No. NORTE-01-0145-FEDER- 030286, co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by FCT through national funds. Additional strategic funding was provided by FCT UIDB/04423/2020 and UIDP/04423/2020. Authors’ interaction and writing of the article was promoted and facilitated by the COST Action CA18239: CONFREMU—Conservation of freshwater mussels: a pan- European approach.info:eu-repo/semantics/publishedVersio

    Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population

    Get PDF
    Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following selection of benznidazole-resistant parasites, all clones examined had lost one of the chromosomes containing the TcNTR gene. Sequence analysis of the remaining TcNTR allele revealed 3 distinct mutant genes in different resistant clones. Expression studies showed that these mutant proteins were unable to activate benznidazole. This correlated with loss of flavin mononucleotide binding. The drug-resistant phenotype could be reversed by transfection with wild-type TcNTR. These results identify TcNTR as a central player in acquired resistance to benznidazole. They also demonstrate that T. cruzi has a propensity to undergo genetic changes that can lead to drug resistance, a finding that has implications for future therapeutic strategies

    Host adaptive immunity deficiency in severe pandemic influenza

    Get PDF
    INTRODUCTION: Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. METHODS: We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. RESULTS: The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. CONCLUSIONS: Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.The study was scientifically sponsored by the Spanish Society for Critical Care Medicine (SEMICYUC). Funding: MICCIN-FIS/JCYL-IECSCYL-SACYL (Spain): Programa de Investigación Comisionada en Gripe, GR09/0021-EMER07/050- PI081236-RD07/0067. CIHR-NIH-Sardinia Recherché-LKSF Canada support DJK.S

    Direct association between pharyngeal viral secretion and host cytokine response in severe pandemic influenza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe disease caused by 2009 pandemic influenza A/H1N1virus is characterized by the presence of hypercytokinemia. The origin of the exacerbated cytokine response is unclear. As observed previously, uncontrolled influenza virus replication could strongly influence cytokine production. The objective of the present study was to evaluate the relationship between host cytokine responses and viral levels in pandemic influenza critically ill patients.</p> <p>Methods</p> <p>Twenty three patients admitted to the ICU with primary viral pneumonia were included in this study. A quantitative PCR based method targeting the M1 influenza gene was developed to quantify pharyngeal viral load. In addition, by using a multiplex based assay, we systematically evaluated host cytokine responses to the viral infection at admission to the ICU. Correlation studies between cytokine levels and viral load were done by calculating the Spearman correlation coefficient.</p> <p>Results</p> <p>Fifteen patients needed of intubation and ventilation, while eight did not need of mechanical ventilation during ICU hospitalization. Viral load in pharyngeal swabs was 300 fold higher in the group of patients with the worst respiratory condition at admission to the ICU. Pharyngeal viral load directly correlated with plasma levels of the pro-inflammatory cytokines IL-6, IL-12p70, IFN-γ, the chemotactic factors MIP-1β, GM-CSF, the angiogenic mediator VEGF and also of the immuno-modulatory cytokine IL-1ra (p < 0.05). Correlation studies demonstrated also the existence of a significant positive association between the levels of these mediators, evidencing that they are simultaneously regulated in response to the virus.</p> <p>Conclusions</p> <p>Severe respiratory disease caused by the 2009 pandemic influenza virus is characterized by the existence of a direct association between viral replication and host cytokine response, revealing a potential pathogenic link with the severe disease caused by other influenza subtypes such as H5N1.</p

    Non-productive angiogenesis disassembles Aß plaque-associated blood vessels

    Get PDF
    The human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD
    corecore