315 research outputs found
Formation of a metastable nanostructured mullite during Plasma Electrolytic Oxidation of aluminium in âsoftâ regime condition
International audienceThis paper demonstrates the possibility of producing a lamellar ceramic nanocomposite at the topmost surface of oxide coatings grown with the Plasma Electrolytic Oxidation process (PEO). PEO was conducted on aluminium in a silicate-rich electrolyte under the so-called "soft" regime. Nanoscale characterisation showed that the transition from the "arcs" to the "soft" regime was concomitant with the gradual formation of a 1:1 mullite/alumina lamellar nanocomposite (â120 nm thick) that filled the cavity of the PEO "pancake" structure. Combined with plasma diagnostic techniques, a three-step growth mechanism was proposed: (i) local melting of alumina under the PEO micro-discharges (â3200 K at high heating rate â3 Ă 10 8 K·s â1); (ii) progressive silicon enrichment of the melt coming from the electrolyte; and (iii) quenching of the melt at a cooling rate of â3.3 Ă 10 7 K·s â1 as the micro-discharge extinguishes. Under such severe cooling conditions, the solidification process was non-equilibrium as predicted by the metastable SiO 2-Al 2 O 3 binary phase diagram. This resulted in phase separation where pure alumina lamellae alternate periodically with 1:1 mullite lamellae
Experimental study of Taylor's hypothesis in a turbulent soap film
An experimental study of Taylor's hypothesis in a quasi-two-dimensional
turbulent soap film is presented. A two probe laser Doppler velocimeter enables
a non-intrusive simultaneous measurement of the velocity at spatially separated
points. The breakdown of Taylor's hypothesis is quantified using the cross
correlation between two points displaced in both space and time; correlation is
better than 90% for scales less than the integral scale. A quantitative study
of the decorrelation beyond the integral scale is presented, including an
analysis of the failure of Taylor's hypothesis using techniques from
predictability studies of turbulent flows. Our results are compared with
similar studies of 3D turbulence.Comment: 27 pages, + 19 figure
Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels
Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromalâepithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromalâepithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development
The Distribution of Phosphatidylinositol 4,5-Bisphosphate in Acinar Cells of Rat Pancreas Revealed with the Freeze-Fracture Replica Labeling Method
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a phospholipid that has been implicated in multiple cellular activities. The distribution of PI(4,5)P2 has been analyzed extensively using live imaging of the GFP-coupled phospholipase C-ÎŽ1 pleckstrin homology domain in cultured cell lines. However, technical difficulties have prevented the study of PI(4,5)P2 in cells of in vivo tissues. We recently developed a method to analyze the nanoscale distribution of PI(4,5)P2 in cultured cells by using the quick-freezing and freeze-fracture replica labeling method. In principle, this method can be applied to any cell because it does not require the expression of artificial probes. In the present study, we modified the method to study cells of in vivo tissues and applied it to pancreatic exocrine acinar cells of the rat. We found that PI(4,5)P2 in the plasma membrane is distributed in an equivalent density in the apical and basolateral domains, but exists in a significantly higher concentration in the gap junction. The intracellular organelles did not show labeling for PI(4,5)P2. The results are novel or different from the reported distribution patterns in cell lines and highlight the importance of studying cells differentiated in vivo
Two Distinct Integrin-Mediated Mechanisms Contribute to Apical Lumen Formation in Epithelial Cells
Background: Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of b1-integrins in epithelial polarization is well established but the significance of the accompanying a-subunits have not been analyzed in detail. Principal Findings: Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) a2b1- and a6b4integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) a3b1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing. Significance: Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis durin
PIP5KIÎČ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells
Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, ÎČ or Îł). PIP5KIÎČ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIÎČ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIÎČ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIÎČ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al
Measurement of Superluminal optical tunneling times in double-barrier photonic bandgaps
Tunneling of optical pulses at 1.5 micron wavelength through double-barrier
periodic fiber Bragg gratings is experimentally investigated. Tunneling time
measurements as a function of barrier distance show that, far from the
resonances of the structure, the transit time is paradoxically short, implying
Superluminal propagation, and almost independent of the distance between the
barriers. These results are in agreement with theoretical predictions based on
phase time analysis and also provide an experimental evidence, in the optical
context, of the analogous phenomenon expected in Quantum Mechanics for
non-resonant superluminal tunneling of particles across two successive
potential barriers. [Attention is called, in particular, to our last Figure].
PACS nos.: 42.50.Wm, 03.65.Xp, 42.70.Qs, 03.50.De, 03.65.-w, 73.40.GkComment: LaTeX file (8 pages), plus 5 figure
Histone Acetylation-Mediated Regulation of the Hippo Pathway
The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al
Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis
INTRODUCTION: CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis.
METHODS: This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint.
RESULTS: Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03).
CONCLUSIONS: In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target
Preparing the COROT space mission: incidence and characterisation of pulsation in the Lower Instability Strip
By pursuing the goal to find new variables in the COROT field-of-view we
characterised a sample of stars located in the lower part of the instability
strip. Our sample is composed of stars belonging to the disk population in the
solar neighbourhood. We found that 23% of the stars display multiperiodic light
variability up to few mmag of amplitude. uvbyBeta photometry fixed most of the
variables in the middle of the instability strip and high-resolution
spectroscopy established that they have vsin i>100 km/s. The comparison with
delta Sct stars in the whole Galaxy shows slightly different features, i.e.,
most delta Sct stars have a 0.05-mag redder (b-y)_0 index and lower vsin i
values. Additional investigation in the open cluster NGC 6633 confirms the same
incidence of variability, i.e., around 20%. The wide variety of pulsational
behaviours of delta Sct stars (including unusual objects such as a variable
beyond the blue edge or a rapidly rotating high-amplitude pulsator) makes them
very powerful asteroseismic tools to be used by COROT. Being quite common among
bright stars, delta Sct stars are suitable targets for optical observations
from space.Comment: 9 pages, 9 figures Accepted for publication in Astronomy &
Astrophysics, Main Journa
- âŠ