151 research outputs found

    Vibrational Predissociation in Hydrogen Bonded Dimers: The Case of (HF)2 and its Isotopomers

    Get PDF
    We use the dimer (HF???HF) as a model system to understand the dynamics in hydrogen-bonded systems. This particularly simple system has been widely used both in experimental and theoretical studies. Here we focus on the remarkable mode selectivity in vibrational predissociation processes which occur on time scales of picoseconds to nanoseconds. We have performed classical molecular dynamics (MD) calculations on the six-dimensional SO-3 potential energy surface (PES) of (HF)2[1] to estimate absorption spectra and predissociation lifetimes ?PD for various initial vibrational excitations involving HF stretching. Our calculations can qualitatively reproduce the mode selectivity in ?PD observed experimentally: Excitations involving the 'hydrogen-bonded' HF stretching mode give rise to shorter ?PD than those involving the 'free' HF stretching mode. Besides results concerning the HF dimer, this study offers the opportunity to check to what extent classical MD calculations on an accurate and realistic potential are suitable to study dynamical properties in such a molecular system

    Stress-Induced Allodynia – Evidence of Increased Pain Sensitivity in Healthy Humans and Patients with Chronic Pain after Experimentally Induced Psychosocial Stress

    Full text link
    Background: Experimental stress has been shown to have analgesic as well as allodynic effect in animals. Despite the obvious negative influence of stress in clinical pain conditions, stress-induced alteration of pain sensitivity has not been tested in humans so far. Therefore, we tested changes of pain sensitivity using an experimental stressor in ten female healthy subjects and 13 female patients with fibromyalgia. Methods: Multiple sensory aspects of pain were evaluated in all participants with the help of the quantitative sensory testing protocol before (60 min) and after (10 and 90 min) inducing psychological stress with a standardized psychosocial stress test (“Trier Social Stress Test”). Results: Both healthy subjects and patients with fibromyalgia showed stress-induced enhancement of pain sensitivity in response to thermal stimuli. However, only patients showed increased sensitivity in response to pressure pain. Conclusions: Our results provide evidence for stress-induced allodynia/hyperalgesia in humans for the first time and suggest differential underlying mechanisms determining response to stressors in healthy subjects and patients suffering from chronic pain. Possible mechanisms of the interplay of stress and mediating factors (e.g. cytokines, cortisol) on pain sensitivity are mentioned. Future studies should help understand better how stress impacts on chronic pain conditions

    Atypical dorsolateral prefrontal activity in females with conduct disorder during effortful emotion regulation

    Get PDF
    BACKGROUND: Conduct disorder (CD), which is characterized by severe aggressive and antisocial behavior, is linked to emotion processing and regulation deficits. However, the neural correlates of emotion regulation are yet to be investigated in adolescents with CD. Furthermore, it remains unclear whether CD is associated with deficits in emotional reactivity, emotion regulation, or both. METHODS: We used functional magnetic resonance imaging to study effortful emotion regulation by cognitive reappraisal in 59 female adolescents 15 to 18 years of age (30 with a CD diagnosis and 29 typically developing (TD) control adolescents). RESULTS: Behaviorally, in-scanner self-report ratings confirmed successful emotion regulation within each group individually but significant group differences in emotional reactivity and reappraisal success when comparing the groups (CD < TD). Functional magnetic resonance imaging results revealed significantly lower activation in left dorsolateral prefrontal cortex and angular gyrus in CD compared with TD adolescents during emotion regulation, but no group differences for emotional reactivity. Furthermore, connectivity between left dorsolateral prefrontal cortex and the bilateral putamen, right prefrontal cortex, and amygdala was reduced in CD compared with TD adolescents during reappraisal. Callous-unemotional traits were unrelated to neural activation, but these traits correlated negatively with behavioral reports of emotional reactivity. CONCLUSIONS: Our results demonstrate reduced prefrontal brain activity and functional connectivity during effortful emotion regulation in female adolescents with CD. This sheds light on the neural basis of the behavioral deficits that have been reported previously. Future studies should investigate whether cognitive interventions are effective in enhancing emotion-regulation abilities and/or normalizing prefrontal and temporoparietal activity in female adolescents with CD

    Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. Aim: To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls.Methods: We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq).Results: We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene.Conclusion: Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.</p

    Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. Aim: To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls.Methods: We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq).Results: We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene.Conclusion: Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.</p

    Spatial variability shapes microbial communities of permafrost soils and their reaction to warming

    Get PDF
    Climate change threatens the Earth’s biggest terrestrial organic carbon reservoir: permafrost soils. With climate warming, frozen soil organic matter may thaw and become available for microbial decomposition and subsequent greenhouse gas emissions. Permafrost soils are extremely heterogenous within the soil profile and between landforms. This heterogeneity in environmental conditions, carbon content and soil organic matter composition, potentially leads to different microbial communities with different responses to warming. The aim of the present study is to (1) elucidate these differences in microbial community compositions and (2) investigate how these communities react to warming. We performed short-term warming experiments with permafrost soil organic matter from northwestern Canada. We compared two sites characterized by different glacial histories (Laurentide Ice Sheet cover during LGM and without glaciation), three landscape types (low-center, flat-center, high-center polygons) and four different soil horizons (organic topsoil layer, mineral topsoil layer, cryoturbated soil layer, and the upper permanently frozen soil layer). We incubated aliquots of all soil samples at 4 °C and at 14 °C for 8 weeks and analyzed microbial community compositions (amplicon sequencing of 16S rRNA gene and ITS1 region) before and after the incubation, comparing them to microbial growth, microbial respiration, microbial biomass and soil organic matter composition. We found distinct bacterial, archaeal and fungal communities for soils of different glaciation history, polygon types and for different soil layers. Communities of low-center polygons differ from high-center and flat-center polygons in bacterial, archaeal and fungal community compositions, while communities of organic soil layers are significantly different from all other horizons. Interestingly, permanently frozen soil layers differ from all other horizons in bacterial and archaeal, but not fungal community composition. The 8-week incubations led to minor shifts in bacterial and archaeal community composition between initial soils and those subjected to 14 °C warming. We also found a strong warming effect on the community compositions in some of the extreme habitats: microbial community compositions of (i) the upper permanently frozen layer and of (ii) low-center polygons differ significantly for incubations at 4 °C and 14 °C. Yet, the lack of a community change in horizons of the active layer suggests that microbes are adapted to fluctuating temperatures due to seasonal thaw events. Our results suggest that warming responses of permafrost soil organic matter, if not frozen or water-saturated, may be predictable by current models. Process changes induced by short-term warming can be rather attributed to changes in microbial physiology than community composition. This work is part of the EU H2020 project “Nunataryuk”

    Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection : a Prospective Case-Control Study

    Get PDF
    In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 mu M, Wilcoxonp <0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77,p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.Peer reviewe
    • …
    corecore