500 research outputs found

    Optimal Levels of Inputs to Control Listeria monocytogenes Contamination at a Smoked Fish Plant

    Get PDF
    Reducing the incidence of listeriosis from contaminated food has significant social health benefits, but reduction requires the use of additional or higher quality inputs at higher costs. We estimate the impact of three inputs in a food processing plant on the prevalence of L. monocytogenes contaminated finished cold smoked salmon. These three inputs were non-contamination of the raw fish fillets, non-contamination of the plant environment, and rate of glove changes on workers. We then estimate the levels of these inputs to use such that the marginal cost of these inputs become equal to the increased social health benefit of reduction in human listeriosis. Since the costs of these inputs are borne by the food processing plant, which may not be able to secure a higher product price because of asymmetric information, we show how social sub-optimal use of these inputs may result.Food Consumption/Nutrition/Food Safety,

    Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Get PDF
    Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates. Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease

    Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Listeria </it>includes two closely related pathogenic and non-pathogenic species, <it>L. monocytogenes </it>and <it>L. innocua</it>. <it>L. monocytogenes </it>is an opportunistic human foodborne and animal pathogen that includes two common lineages. While lineage I is more commonly found among human listeriosis cases, lineage II appears to be overrepresented among isolates from foods and environmental sources. This study used the genome sequences for one <it>L. innocua </it>strain and four <it>L. monocytogenes </it>strains representing lineages I and II, to characterize the contributions of positive selection and recombination to the evolution of the <it>L. innocua</it>/<it>L. monocytogenes </it>core genome.</p> <p>Results</p> <p>Among the 2267 genes in the <it>L. monocytogenes/L. innocua </it>core genome, 1097 genes showed evidence for recombination and 36 genes showed evidence for positive selection. Positive selection was strongly associated with recombination. Specifically, 29 of the 36 genes under positive selection also showed evidence for recombination. Recombination was more common among isolates in lineage II than lineage I; this trend was confirmed by sequencing five genes in a larger isolate set. Positive selection was more abundant in the ancestral branch of lineage II (20 genes) as compared to the ancestral branch of lineage I (9 genes). Additional genes under positive selection were identified in the branch separating the two species; for this branch, genes in the role category "Cell wall and membrane biogenesis" were significantly more likely to have evidence for positive selection. Positive selection of three genes was confirmed in a larger isolate set, which also revealed occurrence of multiple premature stop codons in one positively selected gene involved in flagellar motility (<it>flaR</it>).</p> <p>Conclusion</p> <p>While recombination and positive selection both contribute to evolution of <it>L. monocytogenes</it>, the relative contributions of these evolutionary forces seem to differ by <it>L. monocytogenes </it>lineages and appear to be more important in the evolution of lineage II, which seems to be found in a broader range of environments, as compared to the apparently more host adapted lineage I. Diversification of cell wall and membrane biogenesis and motility-related genes may play a particularly important role in the evolution of <it>L. monocytogenes</it>.</p

    Homopolymeric tracts represent a general regulatory mechanism in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While, traditionally, regulation of gene expression can be grouped into transcriptional, translational, and post-translational mechanisms, some mechanisms of rapid genetic variation can also contribute to regulation of gene expression, e.g., phase variation.</p> <p>Results</p> <p>We show here that prokaryotes evolved to include homopolymeric tracts (HTs) within coding genes as a system that allows for efficient gene inactivation. Analyses of 81 bacterial and 18 archaeal genomes showed that poly(A) and poly(T) HTs are overrepresented in these genomes and preferentially located at the 5' end of coding genes. Location of HTs at the 5' end is not driven by a preferential placement of aminoacids encoded by the AAA and TTT codons at the N-terminal of proteins. The <it>inlA </it>gene of the pathogen <it>L. monocytogenes </it>was used as a model to further study the role of HTs in reversible gene inactivation. In a number of <it>L. monocytogenes </it>strains, <it>inlA </it>harbors a 5' poly(A) HT, which regularly shows frameshift mutation leading to expression of a truncated 8 aa InlA protein. Translational fusions of the <it>inlA </it>5' end allowed us to estimate that the frequency of variation in this HT is about 1,000 fold higher than the estimated average point mutation frequency.</p> <p>Conclusions</p> <p>As frameshift mutations in HTs can occur at high frequencies and enable efficient gene inactivation, hypermutable HTs appear to represent a universal system for regulation of gene expression in prokaryotes. Combined with other studies indicating that HTs also enable rapid diversification of both coding and regulatory genetic sequences in eukaryotes, our data suggest that hypermutable HTs represent a general and rapid evolutionary mechanism facilitating adaptation and gene regulation across diverse organisms.</p

    Animal contact as a source of human non-typhoidal salmonellosis

    Get PDF
    Non-typhoidal Salmonella represents an important human and animal pathogen world-wide. Most human salmonellosis cases are foodborne, but each year infections are also acquired through direct or indirect animal contact in homes, veterinary clinics, zoological gardens, farm environments or other public, professional or private settings. Clinically affected animals may exhibit a higher prevalence of shedding than apparently healthy animals, but both can shed Salmonella over long periods of time. In addition, environmental contamination and indirect transmission through contaminated food and water may complicate control efforts. The public health risk varies by animal species, age group, husbandry practice and health status, and certain human subpopulations are at a heightened risk of infection due to biological or behavioral risk factors. Some serotypes such as Salmonella Dublin are adapted to individual host species, while others, for instance Salmonella Typhimurium, readily infect a broad range of host species, but the potential implications for human health are currently unclear. Basic hygiene practices and the implementation of scientifically based management strategies can efficiently mitigate the risks associated with animal contacts. However, the general public is frequently unaware of the specific disease risks involved, and high-risk behaviors are common. Here we describe the epidemiology and serotype distribution of Salmonella in a variety of host species. In addition, we review our current understanding of the public health risks associated with different types of contacts between humans and animals in public, professional or private settings, and, where appropriate, discuss potential risk mitigation strategies

    The Identification of Proteins in the Proximity of Signal-Anchor Sequences during Their Targeting to and Insertion into the Membrane of the ER

    Get PDF
    Using a photocross-linking approach we have investigated the cytosolic and membrane components involved in the targeting and insertion of signalanchor proteins into the membrane of the ER. The nascent chains of both type I and type II signal-anchor proteins can be cross-linked to the 54-kD subunit of the signal recognition particle. Upon addition of rough microsomes the type I and type II signal-anchor proteins interact with a number of components. Both types of protein interact with an integral membrane protein, the signal sequence receptor, previously identified by its proximity to preprolactin during its translocation (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature lLond.] 328: 830-833). Three proteins, previously unidentified, were found to be cross-linked to the nascent chains of the signal-anchor proteins. Among them was a 37-kD protein that was found to be the main component interacting with the type I SA protein used. These proteins were not seen in the absence of membranes suggesting they are components of the ER. The ability of the nascent chains to be cross-linked to these identiffed proteins was shown to be abolished by prior treatment with agents known to disrupt translocation intermediates or ribosomes. We propose that the newly identified proteins function either in the membrane insertion of only a subset of proteins or only at a specific stage of insertion

    Select \u3cem\u3eListeria monocytogenes\u3c/em\u3e Subtypes Commonly Found in Foods Carry Distinct Nonsense Mutations in \u3cem\u3einlA\u3c/em\u3e, Leading to Expression of Truncated and Secreted Internalin A, and Are Associated with a Reduced Invasion Phenotype for Human Intestinal Epithelial Cells

    Get PDF
    The surface protein internalin A (InlA) contributes to the invasion of human intestinal epithelial cells by Listeria monocytogenes. Screening of L. monocytogenes strains isolated from human clinical cases (n=46), foods (n=118), and healthy animals (n=58) in the United States revealed mutations in inlA leading to premature stop codons (PMSCs) in L. monocytogenes ribotypes DUP-1052A and DUP-16635A (PMSC mutation type 1), DUP-1025A and DUP-1031A (PMSC mutation type 2), and DUP-1046B and DUP-1062A (PMSC mutation type 3). While all DUP-1046B, DUP-1062A, DUP-16635A, and DUP-1031A isolates (n=76) contained inlA PMSCs, ribotypes DUP-1052A and DUP-1025A (n=72) contained isolates with and without inlA PMSCs. Western immunoblotting showed that all three inlA PMSCs result in the production of truncated and secreted InlA. Searches of the Pathogen Tracker database, which contains subtype and source information for more than 5,000 L. monocytogenes isolates, revealed that the six ribotypes shown to contain isolates with inlA PMSCs were overall more commonly isolated from foods than from human listeriosis cases. L. monocytogenes strains carrying inlA PMSCs also showed significantly (P=0.0004) reduced invasion of Caco-2 cells compared to isolates with homologous 3\u27 inlA sequences without PMSCs. Invasion assays with an isogenic PMSC mutant further supported the observation that inlA PMSCs lead to reduced invasion of Caco-2 cells. Our data show that specific L. monocytogenes subtypes which are common among U.S. food isolates but rare among human listeriosis isolates carry inlA mutations that are associated with, and possibly at least partially responsible for, an attenuated invasion phenotype

    Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterium <it>Salmonella enterica </it>includes a diversity of serotypes that cause disease in humans and different animal species. Some <it>Salmonella </it>serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five <it>Salmonella </it>genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes] and Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection.</p> <p>Results</p> <p>Overall, 3323 orthologous genes were identified in all 5 <it>Salmonella </it>genomes analyzed. Use of four different methods to assess homologous recombination identified 270 genes that showed evidence for recombination with at least one of these methods (false discovery rate [FDR] <10%). After exclusion of genes with evidence for recombination, site and branch specific models identified 41 genes as showing evidence for positive selection (FDR <20%), including a number of genes with confirmed or likely roles in virulence and <it>ompC</it>, a gene encoding an outer membrane protein, which has also been found to be under positive selection in other bacteria. A total of 8, 16, 7, and 5 genes showed evidence for positive selection in Choleraesuis, Typhi, Typhimurium, and Paratyphi branch analyses, respectively. Sequencing and evolutionary analyses of four genes in an additional 42 isolates representing 23 serotypes confirmed branch specific positive selection and recombination patterns.</p> <p>Conclusion</p> <p>Our data show that, among the four serotypes analyzed, (i) less than 10% of <it>Salmonella </it>genes in the core genome show evidence for homologous recombination, (ii) a number of <it>Salmonella </it>genes are under positive selection, including genes that appear to contribute to virulence, and (iii) branch specific positive selection contributes to the evolution of host restricted <it>Salmonella </it>serotypes.</p

    Comparative Analysis of Tools and Approaches for Source Tracking Listeria monocytogenes in a Food Facility Using Whole-Genome Sequence Data

    Get PDF
    As WGS is increasingly used by food industry to characterize pathogen isolates, users are challenged by the variety of analysis approaches available, ranging from methods that require extensive bioinformatics expertise to commercial software packages. This study aimed to assess the impact of analysis pipelines (i.e., different hqSNP pipelines, a cg/wgMLST pipeline) and the reference genome selection on analysis results (i.e., hqSNP and allelic differences as well as tree topologies) and conclusion drawn. For these comparisons, whole genome sequences were obtained for 40 Listeria monocytogenes isolates collected over 18 years from a cold-smoked salmon facility and 2 other isolates obtained from different facilities as part of academic research activities; WGS data were analyzed with three hqSNP pipelines and two MLST pipelines. After initial clustering using a k-mer based approach, hqSNP pipelines were run using two types of reference genomes: (i) closely related closed genomes (“closed references”) and (ii) high-quality de novo assemblies of the dataset isolates (“draft references”). All hqSNP pipelines identified similar hqSNP difference ranges among isolates in a given cluster; use of different reference genomes showed minimal impacts on hqSNP differences identified between isolate pairs. Allelic differences obtained by wgMLST showed similar ranges as hqSNP differences among isolates in a given cluster; cgMLST consistently showed fewer differences than wgMLST. However, phylogenetic trees and dendrograms, obtained based on hqSNP and cg/wgMLST data, did show some incongruences, typically linked to clades supported by low bootstrap values in the trees. When a hqSNP cutoff was used to classify isolates as “related” or “unrelated,” use of different pipelines yielded a considerable number of discordances; this finding supports that cut-off values are valuable to provide a starting point for an investigation, but supporting and epidemiological evidence should be used to interpret WGS data. Overall, our data suggest that cgMLST-based data analyses provide for appropriate subtype differentiation and can be used without the need for preliminary data analyses (e.g., k-mer based clustering) or external closed reference genomes, simplifying data analyses needs. hqSNP or wgMLST analyses can be performed on the isolate clusters identified by cgMLST to increase the precision on determining the genomic similarity between isolates

    Consumption-based material flow indicators - Comparing six ways of calculating the Austrian raw material consumption providing six results

    Get PDF
    Understanding the environmental implications of consumption and production depends on appropriate monitoring tools. Material flow accounting (MFA) is a method to monitor natural resource use by countries and has been widely used in research and policy. However, the increasing globalization requires the consideration of "embodied" material use of traded products. The indicator raw material consumption (RMC) represents the material use - no matter where in the world it occurs - associated with domestic final demand. It provides a consumption-based perspective complementary to the MFA indicators that have a territorial focus. Several studies on RMC have been presented recently but with diverging results; hence, a better understanding of the underlying differences is needed. This article presents a comparison of Austrian RMC for the year 2007 calculated by six different approaches (3 multi-regional input-output (MRIO) and 3 hybrid life-cycle analysis-IO approaches). Five approaches result in an RMC higher than the domestic material consumption (DMC). One hybrid LCA-IO approach calculates RMC to be lower than DMC. For specific material categories, results diverge by 50% or more. Due to the policy relevance of the RMC and DMC indicators it is paramount that their robustness is enhanced, which needs both data and method harmonization
    corecore