28,114 research outputs found
Переклад у галузі електроенергетики. Методичні рекомендації до практичних занять з дисципліни для студентів спеціальності 7.030507 «Переклад» напряму підготовки 035 «Філологія»
Методичні матеріали призначено для самостійної роботи студентів
спеціальності 7.030507 “Переклад” напряму підготовки 035 «Філологія» для
організації практичних занять із дисципліни «Переклад у галузі електроенергетики».
Рекомендації орієнтовано на вдосконалення навичок перекладу науково-технічних текстів
One-Pot Synthesis of Single-Source Precursors for Nanocrystalline LED Phosphors M2Si5N8:Eu2+ (M = Sr, Ba)
Highly efficient red-emitting nitridosilicate phosphors Sr2Si5N8:Eu2+ and Ba1.5Sr0.5Si5N8:Eu2+ (doping level 1%) applicable to phosphor converted pc-LEDs were synthesized in nanocrystalline form at low temperatures employing a novel single-source precursor approach. Synthesis starts from nanocrystalline silicon and uses mixed metal amides M(NH2)2 with M = Sr, Ba, Eu as reactive intermediates. In a second approach, a single-source precursor mixture obtained from a one-pot reaction of the corresponding elements (Sr/Ba, Eu, Si) was obtained in supercritical ammonia. Thermoanalytical in situ investigations gain a deeper insight into the degradation mechanism of the mixed metal amide precursors and revealed the onset for the formation of the 2-5-8 phosphor materials at temperatures slightly above 900°C. Formation of the products is complete below 1400°C. Under these conditions, the nitridosilicate phosphors form spherically shaped particles with crystallites of 200 nm in size. Spherical particles are desirable for phosphor application because light extraction may be improved by decreased light trapping and re-absorption losses. As a major advantage of the one-pot precursor approach, the exact Sr/Ba content in the solid solution series Sr2−xBaxSi2N8:Eu2+ and the doping concentration of Eu2+ can easily be controlled in a wide range by the relative amount of the elemental starting materials (Sr, Ba, Eu, Si). Simultaneously, thorough mixing of these elements down to an atomic level (Sr, Ba, Eu) or at least at nanoscopic dimensions (silicon) is achieved by the solution approach. As a consequence, no milling and pre-reaction steps are necessary which might give rise to contamination. Advantageously, this approach can easily be extended to large-scale processes by simultaneously preserving complete mixing. Furthermore, the influence of the starting materials (single-source precursor, nanocrystalline silicon) and the reaction conditions on the crystal shape and finally on the luminescence properties of the products was investigated. The obtained nanophosphors exhibit luminescence properties comparable to coarsely crystalline nitridosilicate phosphor powders prepared by conventional high-temperature processing
On the properties of the transition matrix in bouncing cosmologies
We elaborate further on the evolution properties of cosmological fluctuations
through a bounce. We show this evolution to be describable either by
``transmission'' and ``reflection'' coefficients or by an effective unitary
S-matrix. We also show that they behave in a time reversal invariant way.
Therefore, earlier results are now interpreted in a different perspective and
put on a firmer basis.Comment: 4 pages, 1 figure, to appear in PR
Recommended from our members
The organisation and functions of local Ca<sup>2+</sup> signals
Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, muscle contraction and cell proliferation. The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility that cells have to shape Ca2+ signals in space, time and amplitude. To generate and interpret the variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signalling 'toolkit', which comprises an array of homeostatic and sensory mechanisms. By mixing and matching components from the toolkit, cells can obtain Ca2+ signals that suit their physiology. Recent studies have demonstrated the importance of local Ca2+ signals in defining the specificity of the interaction of Ca2+ with its targets. Furthermore, local Ca2+ signals are the triggers and building blocks for larger global signals that propagate throughout cells
Shocked by GRB 970228: the afterglow of a cosmological fireball
The location accuracy of the BeppoSAX Wide Field Cameras and acute
ground-based followup have led to the detection of a decaying afterglow in X
rays and optical light following the classical gamma-ray burst GRB 970228. The
afterglow in X rays and optical light fades as a power law at all wavelengths.
This behaviour was predicted for a relativistic blast wave that radiates its
energy when it decelerates by ploughing into the surrounding medium. Because
the afterglow has continued with unchanged behaviour for more than a month, its
total energy must be of order 10**51 erg, placing it firmly at a redshift of
order 1. Further tests of the model are discussed, some of which can be done
with available data, and implications for future observing strategies are
pointed out. We discuss how the afterglow can provide a probe for the nature of
the burst sources.Comment: 6 pages LaTeX, 1 postscript figure; minor edits, slightly more data
on light curve, MNRAS, IN PRESS (mid June/early July
The Effect of Macrodiversity on the Performance of Maximal Ratio Combining in Flat Rayleigh Fading
The performance of maximal ratio combining (MRC) in Rayleigh channels with
co-channel interference (CCI) is well-known for receive arrays which are
co-located. Recent work in network MIMO, edge-excited cells and base station
collaboration is increasing interest in macrodiversity systems. Hence, in this
paper we consider the effect of macrodiversity on MRC performance in Rayleigh
fading channels with CCI. We consider the uncoded symbol error rate (SER) as
our performance measure of interest and investigate how different
macrodiversity power profiles affect SER performance. This is the first
analytical work in this area. We derive approximate and exact symbol error rate
results for M-QAM/BPSK modulations and use the analysis to provide a simple
power metric. Numerical results, verified by simulations, are used in
conjunction with the analysis to gain insight into the effects of the link
powers on performance.Comment: 10 pages, 5 figures; IEEE Transaction of Communication, 2012
Corrected typo
Randomized Smoothing for Stochastic Optimization
We analyze convergence rates of stochastic optimization procedures for
non-smooth convex optimization problems. By combining randomized smoothing
techniques with accelerated gradient methods, we obtain convergence rates of
stochastic optimization procedures, both in expectation and with high
probability, that have optimal dependence on the variance of the gradient
estimates. To the best of our knowledge, these are the first variance-based
rates for non-smooth optimization. We give several applications of our results
to statistical estimation problems, and provide experimental results that
demonstrate the effectiveness of the proposed algorithms. We also describe how
a combination of our algorithm with recent work on decentralized optimization
yields a distributed stochastic optimization algorithm that is order-optimal.Comment: 39 pages, 3 figure
- …