293 research outputs found

    Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface

    Full text link
    By combining complementary optical techniques, photoluminescence and time-resolved excited state absorption, we achieve a comprehensive picture of the relaxation processes in the organic/inorganic hybrid system SP6/ZnO. We identify two long-lived excited states of the organic molecules of which only the lowest energy one, localized on the sexiphenyl backbone of the molecule, is found to efficiently charge separate to the ZnO conduction band or radiatively recombine. The other state, most likely localized on the spiro-linked biphenyl, relaxes only by intersystem crossing to a long-lived, probably triplet state, thus acting as a sink of the excitation and limiting the charge separation efficiency.Comment: 6 pages, 5 figure

    H+-Independent Glutamine Transport in Plant Root Tips

    Get PDF
    BACKGROUND: Glutamine is one of the primary amino acids in nitrogen assimilation and often the most abundant amino acid in plant roots. To monitor this important metabolite, a novel genetically encoded fluorescent FRET-reporter was constructed and expressed in Arabidopsis thaliana. As a candidate for the glutamine fluxes, the root tip localized, putative amino acid transporter CAT8 was analyzed and heterologously expressed in yeast and oocytes. PRINCIPAL FINDINGS: Rapid and reversible in vivo fluorescence changes were observed in reporter-expressing root tips upon exposure and removal of glutamine. FRET changes were detected at acid and neutral pH and in the presence of a protonophore, suggesting that part of the glutamine fluxes were independent of the pH. The putative amino acid transporter CAT8 transported glutamine, had a half maximal activity at approximately 100 microM and the transport was independent of external pH. CAT8 localized not only to the plasma membrane, but additionally to the tonoplast, when tagged with GFP. Ultrastructural analysis confirmed this dual localization and additionally identified CAT8 in membranes of autophagosomes. Loss-of function of CAT8 did not affect growth in various conditions, but over-expressor plants had increased sensitivity to a structural substrate analog, the glutamine synthetase inhibitor L-methionine sulfoximine. CONCLUSIONS: The combined data suggest that proton-independent glutamine facilitators exist in root tips

    Identification and quantification of macro- and microplastics on an agricultural farmland

    Get PDF
    Abstract Microplastic contamination of aquatic ecosystems is a high priority research topic, whereas the issue on terrestrial ecosystems has been widely neglected. At the same time, terrestrial ecosystems under human influence, such as agroecosystems, are likely to be contaminated by plastic debris. However, the extent of this contamination has not been determined at present. Via Fourier transform infrared (FTIR) analysis, we quantified for the first time the macro- and microplastic contamination on an agricultural farmland in southeast Germany. We found 206 macroplastic pieces per hectare and 0.34 ± 0.36 microplastic particles per kilogram dry weight of soil. In general, polyethylene was the most common polymer type, followed by polystyrene and polypropylene. Films and fragments were the dominating categories found for microplastics, whereas predominantly films were found for macroplastics. Since we intentionally chose a study site where microplastic-containing fertilizers and agricultural plastic applications were never used, our findings report on plastic contamination on a site which only receives conventional agricultural treatment. However, the contamination is probably higher in areas where agricultural plastic applications, like greenhouses, mulch, or silage films, or plastic-containing fertilizers (sewage sludge, biowaste composts) are applied. Hence, further research on the extent of this contamination is needed with special regard to different cultivation practices

    Etude du rôle hydrologique d'une tourbière de montagne : modélisation comparée de couples "averse-crue" sur deux bassins versants du Mont-Lozère

    Get PDF
    1 tableau ; 17 figuresL'influence d'une tourbière de dépression sur le comportement hydrologique en crue d'un bassin versant montagneux (Mont-Lozère) est étudiée à l'aide d'un modèle pluie-débit horaire conceptuel global (modèle GR3H). Les performances et les valeurs des paramètres du modèle obtenues sur ce bassin versant (bassin du Peschio) sont comparées avec celles obtenues sur un bassin versant contigu de référence sans tourbière de dépression (bassin du Samouse). Le modèle s'avère nettement plus performant sur le second bassin versant. Sur les 24 crues étudiées entre janvier 2000 et décembre 2001, une seule est notablement mal restituée sur le bassin de référence, contre 9 sur le bassin du Peschio. La forme des hydrogrammes unitaires utilisés par le modèle confirme les résultats de l'étude descriptive menée en parallèle : la présence de la tourbière induit un retard et un amortissement de la réponse en crue du bassin versant. Toutefois cet effet est soumis à une très nette saisonnalité, avec une augmentation progressive du temps de réponse pendant la période d'assèchement de la tourbière, le temps de réponse du bassin versant passant de 2 heures environ en période hivernale à une valeur maximale de 14 heures observée en août 2000. Par comparaison, le temps de réponse du bassin de référence reste voisin de 1,5 heure

    Toward ab initio density functional theory for nuclei

    Get PDF
    We survey approaches to nonrelativistic density functional theory (DFT) for nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab initio DFT starts with a microscopic Hamiltonian and is naturally formulated using orbital-based functionals, which generalize the conventional local-density-plus-gradients form. The orbitals satisfy single-particle equations with multiplicative (local) potentials. The DFT functionals can be developed starting from internucleon forces using wave-function based methods or by Legendre transform via effective actions. We describe known and unresolved issues for applying these formulations to the nuclear many-body problem and discuss how ab initio approaches can help improve empirical energy density functionals.Comment: 69 pages, 16 figures, many revisions based on feedback. To appear in Progress in Particle and Nuclear Physic

    miR-34a is upregulated inAIP-mutated somatotropinomas and promotes octreotide resistance

    Get PDF
    Pituitary adenomas (PAs) are intracranial tumors associated with significant morbidity due to hormonal dysregulation, mass effects and have a heavy treatment burden. Growth hormone (GH)-secreting PAs (somatotropinomas) cause acromegaly-gigantism. Genetic forms of somatotropinomas due to germlineAIPmutations (AIPmut+) have an early onset and are aggressive and resistant to treatment with somatostatin analogs (SSAs), including octreotide. The molecular underpinnings of these clinical features remain unclear. We investigated the role of miRNA dysregulation inAIPmut+ vsAIPmut- PA samples by array analysis. miR-34a and miR-145 were highly expressed inAIPmut+ vsAIPmut- somatotropinomas. Ectopic expression ofAIPmut (p.R271W) inAip(-/-)mouse embryonic fibroblasts (MEFs) upregulated miR-34a and miR-145, establishing a causal link betweenAIPmut and miRNA expression. In PA cells (GH3), miR-34a overexpression promoted proliferation, clonogenicity, migration and suppressed apoptosis, whereas miR-145 moderately affected proliferation and apoptosis. Moreover, high miR-34a expression increased intracellular cAMP, a critical mitogenic factor in PAs. Crucially, high miR-34a expression significantly blunted octreotide-mediated GH inhibition and antiproliferative effects. miR-34a directly targetsGnai2encoding G alpha i2, a G protein subunit inhibiting cAMP production. Accordingly, G alpha i2 levels were significantly lower inAIPmut+ vsAIPmut- PA. Taken together, somatotropinomas withAIPmutations overexpress miR-34a, which in turn downregulates G alpha i2 expression, increases cAMP concentration and ultimately promotes cell growth. Upregulation of miR-34a also impairs the hormonal and antiproliferative response of PA cells to octreotide. Thus, miR-34a is a novel downstream target of mutantAIPthat promotes a cellular phenotype mirroring the aggressive clinical features ofAIPmut+ acromegaly.Peer reviewe

    Whole‐brain deuterium metabolic imaging via concentric ring trajectory readout enables assessment of regional variations in neuronal glucose metabolism

    Get PDF
    Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non‐invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium‐labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase‐encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non‐Cartesian spatial‐spectral sampling schemes for whole‐brain 2H FID‐MR Spectroscopic Imaging to assess time‐resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions. Results were compared with lower‐resolution DMI maps, conventionally acquired within the same session. Six healthy volunteers (4 m/2 f) were scanned for ~90 min after administration of 0.8 g/kg oral [6,6′]‐2H glucose. Time‐resolved whole brain 2H FID‐DMI maps of glucose (Glc) and glutamate + glutamine (Glx) were acquired with 0.75 and 2 mL isotropic spatial resolution using density‐weighted concentric ring trajectory (CRT) and conventional phase encoding (PE) readout, respectively, at 7 T. To minimize the effect of decreased signal‐to‐noise ratios associated with smaller voxels, low‐rank denoising of the spatiotemporal data was performed during reconstruction. Sixty‐three minutes after oral tracer uptake three‐dimensional (3D) CRT‐DMI maps featured 19% higher (p = .006) deuterium‐labeled Glc concentrations in GM (1.98 ± 0.43 mM) compared with WM (1.66 ± 0.36 mM) dominated regions, across all volunteers. Similarly, 48% higher (p = .01) 2H‐Glx concentrations were observed in GM (2.21 ± 0.44 mM) compared with WM (1.49 ± 0.20 mM). Low‐resolution PE‐DMI maps acquired 70 min after tracer uptake featured smaller regional differences between GM‐ and WM‐dominated areas for 2H‐Glc concentrations with 2.00 ± 0.35 mM and 1.71 ± 0.31 mM, respectively (+16%; p = .045), while no regional differences were observed for 2H‐Glx concentrations. In this study, we successfully implemented 3D FID‐MRSI with fast CRT encoding for dynamic whole‐brain DMI at 7 T with 2.5‐fold increased spatial resolution compared with conventional whole‐brain phase encoded (PE) DMI to visualize regional metabolic differences. The faster metabolic activity represented by 48% higher Glx concentrations was observed in GM‐ compared with WM‐dominated regions, which could not be reproduced using whole‐brain DMI with the low spatial resolution protocol. Improved assessment of regional pathologic alterations using a fully non‐invasive imaging method is of high clinical relevance and could push DMI one step toward clinical applications
    corecore