147 research outputs found
Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird
The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible
Participation as Post-Fordist Politics: Demos, New Labour, and Science Policy
In recent years, British science policy has seen a significant shift âfrom deficit to dialogueâ in conceptualizing the relationship between science and the public. Academics in the interdisciplinary field of Science and Technology Studies (STS) have been influential as advocates of the new public engagement agenda. However, this participatory agenda has deeper roots in the political ideology of the Third Way. A framing of participation as a politics suited to post-Fordist conditions was put forward in the magazine Marxism Today in the late 1980s, developed in the Demos thinktank in the 1990s, and influenced policy of the New Labour government. The encouragement of public participation and deliberation in relation to science and technology has been part of a broader implementation of participatory mechanisms under New Labour. This participatory program has been explicitly oriented toward producing forms of social consciousness and activity seen as essential to a viable knowledge economy and consumer society. STS arguments for public engagement in science have gained influence insofar as they have intersected with the Third Way politics of post-Fordism
Genetics of Dispersal
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.Peer reviewe
System-wide approaches to antimicrobial therapy and antimicrobial resistance in the UK: the AMR-X framework
Antimicrobial resistance (AMR) threatens human, animal, and environmental health. Acknowledging the urgency of addressing AMR, an opportunity exists to extend AMR action-focused research beyond the confines of an isolated biomedical paradigm. An AMR learning system, AMR-X, envisions a national network of health systems creating and applying optimal use of antimicrobials on the basis of their data collected from the delivery of routine clinical care. AMR-X integrates traditional AMR discovery, experimental research, and applied research with continuous analysis of pathogens, antimicrobial uses, and clinical outcomes that are routinely disseminated to practitioners, policy makers, patients, and the public to drive changes in practice and outcomes. AMR-X uses connected data-to-action systems to underpin an evaluation framework embedded in routine care, continuously driving implementation of improvements in patient and population health, targeting investment, and incentivising innovation. All stakeholders co-create AMR-X, protecting the public from AMR by adapting to continuously evolving AMR threats and generating the information needed for precision patient and population care
Individual and Contextual Origins of Durable Partisanship
Kroh M, Selb P. Individual and Contextual Origins of Durable Partisanship. In: Bartle J, Bellucci P, eds. Political Parties and Partisanship : social identity and individual attitudes. ECPR studies in European political science. Vol 57. London: Routledge; 2009: 107-120
1H and 13C solution- and solid-state NMR investigation into wax products from the Fischer-Tropsch process
(1)H and (13)C solid- and solution-state NMR have been used to characterise waxes produced in the Fischer-Tropsch reaction, using Co-based catalysts either unpromoted or promoted with approximately 1 wt% of either cerium or rhenium. The aim was to measure average structural information at the submolecular level of the hydrocarbon waxes produced, along with identification of the minor products, such as oxygenates and olefins, which are typically observed in these waxes. A parameter of key interest is the average number of carbon atoms within the hydrocarbon chain (N(C)). A wax prepared using an unpromoted Co/Al(2)O(3) catalyst had N(C)similar to 20, whilst waxes made using rhenium- or cerium-promoted Co/Al(2)O(3) catalysts were found to have N(C)similar to 21. All three samples contained small amounts of oxygenates and alkenes. The subtle differences found in the waxes, in particular the minor species produced, demonstrate that the different promoters have different effects during the reaction, with the Re-promoted catalyst producing the fewest by-products. It is shown in (13)C solid-state NMR spectra that for that for longer chain (compared to the lengths of chain in previous studies) waxes that the lack of resolution and the complexities added by the differential cross-polarisation (CP) dynamics mean that it is difficult to accurately determine N(C) from this approach. However the N(C) determined by (13)C CP magic angle spinning NMR is broadly consistent with the more accurate solution approaches used and suggest that the wax characteristics do not change in solution. On this basis an alternative approach for determining N(C) is suggested based on (1)H solution state NMR that provides a higher degree of accuracy of the chain length as well as information on the minor constituents
- âŠ