8,266 research outputs found

    Uni-directional transport properties of a serpent billiard

    Full text link
    We present a dynamical analysis of a classical billiard chain -- a channel with parallel semi-circular walls, which can serve as a model for a bended optical fiber. An interesting feature of this model is the fact that the phase space separates into two disjoint invariant components corresponding to the left and right uni-directional motions. Dynamics is decomposed into the jump map -- a Poincare map between the two ends of a basic cell, and the time function -- traveling time across a basic cell of a point on a surface of section. The jump map has a mixed phase space where the relative sizes of the regular and chaotic components depend on the width of the channel. For a suitable value of this parameter we can have almost fully chaotic phase space. We have studied numerically the Lyapunov exponents, time auto-correlation functions and diffusion of particles along the chain. As a result of a singularity of the time function we obtain marginally-normal diffusion after we subtract the average drift. The last result is also supported by some analytical arguments.Comment: 15 pages, 9 figure (19 .(e)ps files

    On the algorithmic construction of classifying spaces and the isomorphism problem for biautomatic groups

    Full text link
    We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups, and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite centre. We describe an algorithm that, given an arbitrary finite presentation of an automatic group Γ\Gamma, will construct explicit finite models for the skeleta of K(Γ,1)K(\Gamma,1) and hence compute the integral homology and cohomology of Γ\Gamma.Comment: 21 pages, 4 figure

    Disorder induced phase segregation in La2/3Ca1/3MnO3 manganites

    Full text link
    Neutron powder diffraction experiments on La2/3Ca1/3MnO3 over a broad temperature range above and below the metal-insulator transition have been analyzed beyond the Rietveld average approach by use of Reverse Monte Carlo modelling. This approach allows the calculation of atomic pair distribution functions and spin correlation functions constrained to describe the observed Bragg and diffuse nuclear and magnetic scattering. The results evidence phase separation within a paramagnetic matrix into ferro and antiferromagnetic domains correlated to anistropic lattice distortions in the vicinity of the metal-insulator transition.Comment: 3 pages, 4 figures. Submitted to Phys. Rev. Lett. Figure 1 replace

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 13920+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate \le0.17 M_{\odot} yr1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of \geq105^{5} yr with a rotational velocity of \leq1228 km s1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    On the difference of torus geometry between hidden and non-hidden broad line active galactic nuclei

    Get PDF
    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGN) with clumpy torus models. We compiled high spatial resolution (0.3\sim 0.3--0.70.7 arcsec) mid-IR NN-band spectroscopy, QQ-band imaging and nuclear near- and mid-IR photometry from the literature. Combining these nuclear near- and mid-IR observations, far-IR photometry and clumpy torus models, enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties; type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGN have smaller torus opening angles and larger covering factors than those of HBLR AGN. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGN.Comment: 13 pages, 5 figures, accepted for publication in Ap

    GJ 900: A new hierarchical system with low-mass components

    Full text link
    Speckle interferometric observations made with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 revealed the triple nature of the nearby (πHip=51.80±1.74\pi_{Hip}=51.80\pm1.74 mas) low-mass young (200\approx200 Myr) star GJ 900. The configuration of the triple system allowed it to be dynamically unstable. Differential photometry performed from 2000 through 2004 yielded II- and KK-band absolute magnitudes and spectral types for the components to be IAI_{A}=6.66±\pm0.08, IBI_{B}=9.15±\pm0.11, ICI_{C}=10.08±\pm0.26, KAK_{A}=4.84±\pm0.08, KBK_{B}=6.76±\pm0.20, KCK_{C}=7.39±\pm0.31, SpASp_{A}\approxK5--K7, SpBSp_{B}\approxM3--M4, SpCSp_{C}\approxM5--M6. The ``mass--luminosity'' relation is used to estimate the individual masses of the components: MA\mathcal{M}_{A}0.64M\approx0.64\mathcal{M}_{\odot}, MB\mathcal{M}_{B}0.21M\approx0.21\mathcal{M}_{\odot}, MC\mathcal{M}_{C}0.13M\approx0.13\mathcal{M}_{\odot}. From the observations of the components relative motion in the period 2000--2006, we conclude that GJ 900 is a hierarchical triple star with the possible orbital periods PABC_{A-BC}\approx80 yrs and PBC_{BC}\approx20 yrs. An analysis of the 2MASS images of the region around GJ 900 leads us to suggest that the system can include other very-low-mass components.Comment: 7 pages, 5 figure

    Renormalization Group Analysis of a Quivering String Model of Posture Control

    Full text link
    Scaling concepts and renormalization group (RG) methods are applied to a simple linear model of human posture control consisting of a trembling or quivering string subject to damping and restoring forces. The string is driven by uncorrelated white Gaussian noise intended to model the corrections of the physiological control system. We find that adding a weak quadratic nonlinearity to the posture control model opens up a rich and complicated phase space (representing the dynamics) with various non-trivial fixed points and basins of attraction. The transition from diffusive to saturated regimes of the linear model is understood as a crossover phenomenon, and the robustness of the linear model with respect to weak non-linearities is confirmed. Correlations in posture fluctuations are obtained in both the time and space domain. There is an attractive fixed point identified with falling. The scaling of the correlations in the front-back displacement, which can be measured in the laboratory, is predicted for both the large-separation (along the string) and long-time regimes of posture control.Comment: 20 pages, 13 figures, RevTeX, accepted for publication in PR

    Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation

    Full text link
    We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic subthreshold oscillations in membrane potential and associated spike generation. On depolarization by an applied current, the model exhibits subthreshold oscillatory activity with occasional spike generation when oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity, variation of maximum conductance values and scaling to different temperature ranges alter the responses of the model with respect to voltage traces, interspike intervals and their statistics and the mean spike frequency curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure

    Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    Get PDF
    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings
    corecore