24,024 research outputs found
The End of Enterprise Risk Management
Enterprise risk management (ERM) has grown in significance since the mid-1990s to become a key resource in the conceptualization and design of risk management systems. We argue that this emphasis is misplaced and contributes to the problem of a divide between analysis and action. ERM may be relevant for regulators and others in need of proof of good governance, but its formulations have become progressively detached from the reality of modern financial organizations. We argue that buy-side risk management practices provide an alternative conception of risk management which is more grounded in operations and which avoids the problems of actionability created by controls-based ERM.
A NEW “FERROVUM” SPECIES IN A SCHWERTMANNITE-PRODUCING PLANT FOR MINE WATER TREATMENT
Mining activities for metals or coal often result in the development of acid mine drainage
due to the oxidation of sulfidic minerals which get exposed to oxygen. The acidic mine waters are
characterized by low pH, high concentrations of sulfate and ferrous iron, and possibly dissolved
heavy metals or metalloids. Conventional treatment comprises neutralization and oxidation yielding
a sludge of iron oxides/hydroxides
Market Bubbles and Wasteful Avoidance: Tax and Regulatory Constraints on Short Sales
Although short sales make an important contribution to financial markets, this transaction faces legal constraints that do not govern long positions. In evaluating these constraints, other commentators, who are virtually all economists, have not focused rigorously enough on the precise contours of current law. Some short sale constraints are mischaracterized, while others are omitted entirely. Likewise, the existing literature neglects many strategies in which well advised investors circumvent these constraints; this avoidance may reduce the impact of short sale constraints on market prices, but may contribute to social waste in other ways. To fill these gaps in the literature, this paper offers a careful look at current law and draws three conclusions. First, short sales play a valuable role in the financial markets; while there may be plausible reasons to regulate short sales-- most notably, concerns about market manipulation and panics -- current law is very poorly tailored to these goals. Second, investor self-help can ease some of the harm from this poor tailoring, but at a cost. Third, relatively straightforward reforms can eliminate the need for self-help while accommodating legitimate regulatory goals. In making these points, we focus primarily on a burden that other commentators have neglected: profits from short sales generally are ineligible for the reduced tax rate on long-term capital gains, even if the short sale is in place for more than one year.Short sales, Momentum traders, Value investors
Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable Tc Titanium Nitride Growth
The structural and electrical properties of Ti-N films deposited by reactive
sputtering depend on their growth parameters, in particular the Ar:N2 gas
ratio. We show that the nitrogen percentage changes the crystallographic phase
of the film progressively from pure \alpha-Ti, through an \alpha-Ti phase with
interstitial nitrogen, to stoichiometric Ti2N, and through a substoichiometric
TiNX to stoichiometric TiN. These changes also affect the superconducting
transition temperature, Tc, allowing, the superconducting properties to be
tailored for specific applications. After decreasing from a Tc of 0.4 K for
pure Ti down to below 50 mK at the Ti2N point, the Tc then increases rapidly up
to nearly 5 K over a narrow range of nitrogen incorporation. This very sharp
increase of Tc makes it difficult to control the properties of the film from
wafer-to-wafer as well as across a given wafer to within acceptable margins for
device fabrication. Here we show that the nitrogen composition and hence the
superconductive properties are related to, and can be determined by,
spectroscopic ellipsometry. Therefore, this technique may be used for process
control and wafer screening prior to investing time in processing devices
Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators
We present a method to systematically locate and extract capacitive and
inductive losses in superconducting resonators at microwave frequencies by use
of mixed-material, lumped element devices. In these devices, ultra-low loss
titanium nitride was progressively replaced with aluminum in the
inter-digitated capacitor and meandered inductor elements. By measuring the
power dependent loss at 50 mK as the Al-TiN fraction in each element is
increased, we find that at low electric field, i.e. in the single photon limit,
the loss is two level system in nature and is correlated with the amount of Al
capacitance rather than the Al inductance. In the high electric field limit,
the remaining loss is linearly related to the product of the Al area times its
inductance and is likely due to quasiparticles generated by stray radiation. At
elevated temperature, additional loss is correlated with the amount of Al in
the inductance, with a power independent TiN-Al interface loss term that
exponentially decreases as the temperature is reduced. The TiN-Al interface
loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure
Model of Transcriptional Activation by MarA in Escherichia coli
We have developed a mathematical model of transcriptional activation by MarA
in Escherichia coli, and used the model to analyze measurements of
MarA-dependent activity of the marRAB, sodA, and micF promoters in mar-rob-
cells. The model rationalizes an unexpected poor correlation between the
mid-point of in vivo promoter activity profiles and in vitro equilibrium
constants for MarA binding to promoter sequences. Analysis of the promoter
activity data using the model yielded the following predictions regarding
activation mechanisms: (1) MarA activation of the marRAB, sodA, and micF
promoters involves a net acceleration of the kinetics of transitions after RNA
polymerase binding, up to and including promoter escape and message elongation;
(2) RNA polymerase binds to these promoters with nearly unit occupancy in the
absence of MarA, making recruitment of polymerase an insignificant factor in
activation of these promoters; and (3) instead of recruitment, activation of
the micF promoter might involve a repulsion of polymerase combined with a large
acceleration of the kinetics of polymerase activity. These predictions are
consistent with published chromatin immunoprecipitation assays of interactions
between polymerase and the E. coli chromosome. A lack of recruitment in
transcriptional activation represents an exception to the textbook description
of activation of bacterial sigma-70 promoters. However, use of accelerated
polymerase kinetics instead of recruitment might confer a competitive advantage
to E. coli by decreasing latency in gene regulation.Comment: 30 pages, 2 figure
The ISCIP Analyst, Volume VIII, Issue 1
This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy
Etch Induced Microwave Losses in Titanium Nitride Superconducting Resonators
We have investigated the correlation between the microwave loss and
patterning method for coplanar waveguide titanium nitride resonators fabricated
on Si wafers. Three different methods were investigated: fluorine- and
chlorine-based reactive ion etches and an argon-ion mill. At high microwave
probe powers the reactive etched resonators showed low internal loss, whereas
the ion-milled samples showed dramatically higher loss. At single-photon powers
we found that the fluorine-etched resonators exhibited substantially lower loss
than the chlorine-etched ones. We interpret the results by use of numerically
calculated filling factors and find that the silicon surface exhibits a higher
loss when chlorine-etched than when fluorine-etched. We also find from
microscopy that re-deposition of silicon onto the photoresist and side walls is
the probable cause for the high loss observed for the ion-milled resonator
Coherence in a transmon qubit with epitaxial tunnel junctions
We developed transmon qubits based on epitaxial tunnel junctions and
interdigitated capacitors. This multileveled qubit, patterned by use of
all-optical lithography, is a step towards scalable qubits with a high
integration density. The relaxation time T1 is .72-.86mu sec and the ensemble
dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu
sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker
level splitting than observed in qubits with amorphous barriers in
equivalent-size junctions. The qubit's inferred microwave loss closely matches
the weighted losses of the individual elements (junction, wiring dielectric,
and interdigitated capacitor), determined by independent resonator
measurements
- …