17,180 research outputs found
The Confessions of Montaigne
Montaigne rarely repented and he viewed confession—both juridical and ecclesiastical—with skepticism. Confession, Montaigne believed, forced a mode of self-representation onto the speaker that was inevitably distorting. Repentance, moreover, made claims about self-transformation that Montaigne found improbable. This article traces these themes in the context of Montaigne’s Essays, with particular attention to “On Some Verses of Virgil” and argues that, for Montaigne, a primary concern was finding a means of describing a self that he refused to reduce, as had Augustine and many other writers before and after him, to the homo interior
Recommended from our members
A numerical simulation of neural fields on curved geometries
Despite the highly convoluted nature of the human brain, neural field models typically treat the cortex as a planar two-dimensional sheet of neurons. Here, we present an approach for solving neural field equations on surfaces more akin to the cortical geometries typically obtained from neuroimaging data. Our approach involves solving the integral form of the partial integro-differential equation directly using collocation techniques alongside efficient numerical procedures for determining geodesic distances between neural units. To illustrate our methods, we study localised activity patterns in a two-dimensional neural field equation posed on a periodic square domain, the curved surface of a torus, and the cortical surface of a rat brain, the latter of which is constructed using neuroimaging data. Our results are twofold: Firstly, we find that collocation techniques are able to replicate solutions obtained using more standard Fourier based methods on a flat, periodic domain, independent of the underlying mesh. This result is particularly significant given the highly irregular nature of the type of meshes derived from modern neuroimaging data. And secondly, by deploying efficient numerical schemes to compute geodesics, our approach is not only capable of modelling macroscopic pattern formation on realistic cortical geometries, but can also be extended to include cortical architectures of more physiological relevance. Importantly, such an approach provides a means by which to investigate the influence of cortical geometry upon the nucleation and propagation of spatially localised neural activity and beyond. It thus promises to provide model-based insights into disorders like epilepsy, or spreading depression, as well as healthy cognitive processes like working memory or attention
Recommended from our members
Can linear collocation ever beat quadratic?
Computational approaches are becoming increasingly important in neuroscience, where complex, nonlinear systems modelling neural activity across multiple spatial and temporal scales are the norm. This paper considers collocation techniques for solving neural field models, which typically take the form of a partial integro-dfferential equation. In particular, we investigate and compare the convergence properties of linear and quadratic collocation on both regular grids and more general meshes not fixed to the regular Cartesian grid points. For regular grids we perform a comparative analysis against more standard techniques, in which the convolution integral is computed either by using Fourier based methods or via the trapezoidal rule. Perhaps surprisingly, we find that on regular, periodic meshes, linear collocation displays better convergence properties than quadratic collocation, and is in fact comparable with the spectral convergence displayed by both the Fourier based and trapezoidal techniques. However, for more general meshes we obtain superior convergence of the
convolution integral using higher order methods, as expected
Role of Nutrition in Alcoholic Liver Disease: Summary of the Symposium at the ESBRA 2017 Congress.
The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows
- …