130 research outputs found

    Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation

    Get PDF
    Abundance estimates from animal point-count surveys require accurate estimates of detection probabilities. The standard model for estimating detection from removal-sampled point-count surveys assumes that organisms at a survey site are detected at a constant rate; however, this assumption can often lead to biased estimates. We consider a class of N-mixture models that allows for detection heterogeneity over time through a flexibly defined time-to-detection distribution (TTDD) and allows for fixed and random effects for both abundance and detection. Our model is thus a combination of survival time-to-event analysis with unknown-N, unknown-p abundance estimation. We specifically explore two-parameter families of TTDDs, e.g., gamma, that can additionally include a mixture component to model increased probability of detection in the initial observation period. Based on simulation analyses, we find that modeling a TTDD by using a two-parameter family is necessary when data have a chance of arising from a distribution of this nature. In addition, models with a mixture component can outperform non-mixture models even when the truth is non-mixture. Finally, we analyze an Ovenbird data set from the Chippewa National Forest using mixed effect models for both abundance and detection. We demonstrate that the effects of explanatory variables on abundance and detection are consistent across mixture TTDDs but that flexible TTDDs result in lower estimated probabilities of detection and therefore higher estimates of abundance

    Imaging and radiotherapy in prostate cancer: advances in biomarkers and treatment

    Get PDF

    Comparison of Synthetic Computed Tomography Generation Methods, Incorporating Male and Female Anatomical Differences, for Magnetic Resonance Imaging-Only Definitive Pelvic Radiotherapy

    Get PDF
    Purpose: There are several means of synthetic computed tomography (sCT) generation for magnetic resonance imaging (MRI)-only planning; however, much of the research omits large pelvic treatment regions and female anatomical specific methods. This research aimed to apply four of the most popular methods of sCT creation to facilitate MRI-only radiotherapy treatment planning for male and female anorectal and gynecological neoplasms. sCT methods were validated against conventional computed tomography (CT), with regard to Hounsfield unit (HU) estimation and plan dosimetry. Methods and Materials: Paired MRI and CT scans of 40 patients were used for sCT generation and validation. Bulk density assignment, tissue class density assignment, hybrid atlas, and deep learning sCT generation methods were applied to all 40 patients. Dosimetric accuracy was assessed by dose difference at reference point, dose volume histogram (DVH) parameters, and 3D gamma dose comparison. HU estimation was assessed by mean error and mean absolute error in HU value between each sCT and CT. Results: The median percentage dose difference between the CT and sCT was &lt;1.0% for all sCT methods. The deep learning method resulted in the lowest median percentage dose difference to CT at −0.03% (IQR 0.13, −0.31) and bulk density assignment resulted in the greatest difference at −0.73% (IQR −0.10, −1.01). The mean 3D gamma dose agreement at 3%/2 mm among all sCT methods was 99.8%. The highest agreement at 1%/1 mm was 97.3% for the deep learning method and the lowest was 93.6% for the bulk density method. Deep learning and hybrid atlas techniques gave the lowest difference to CT in mean error and mean absolute error in HU estimation. Conclusions: All methods of sCT generation used in this study resulted in similarly high dosimetric agreement for MRI-only planning of male and female cancer pelvic regions. The choice of the sCT generation technique can be guided by department resources available and image guidance considerations, with minimal impact on dosimetric accuracy.</p

    Optimisation and validation of an integrated magnetic resonance imaging-only radiotherapy planning solution

    Get PDF
    Background and purpose: Magnetic resonance imaging (MRI)-only treatment planning is gaining in popularity in radiation oncology, with various methods available to generate a synthetic computed tomography (sCT) for this purpose. The aim of this study was to validate a sCT generation software for MRI-only radiotherapy planning of male and female pelvic cancers. The secondary aim of this study was to improve dose agreement by applying a derived relative electron and mass density (RED) curve to the sCT. Method and materials: Computed tomography (CT) and MRI scans of forty patients with pelvic neoplasms were used in the study. Treatment plans were copied from the CT scan to the sCT scan for dose comparison. Dose difference at reference point, 3D gamma comparison and dose volume histogram analysis was used to validate the dose impact of the sCT. The RED values were optimised to improve dose agreement by using a linear plot. Results: The average percentage dose difference at isocentre was 1.2% and the mean 3D gamma comparison with a criteria of 1%/1 mm was 84.0% ± 9.7%. The results indicate an inherent systematic difference in the dosimetry of the sCT plans, deriving from the tissue densities. With the adapted REDmod table, the average percentage dose difference was reduced to −0.1% and the mean 3D gamma analysis improved to 92.9% ± 5.7% at 1%/1 mm. Conclusions: CT generation software is a viable solution for MRI-only radiotherapy planning. The option makes it relatively easy for departments to implement a MRI-only planning workflow for cancers of male and female pelvic anatomy.</p

    Genitourinary quality-of-life comparison between urethral sparing prostate stereotactic body radiation therapy monotherapy and virtual high-dose-rate brachytherapy boost

    Get PDF
    Purpose: Although radiation dose escalation improves prostate cancer disease control, it can cause increased toxicity. Genitourinary (GU) symptoms after prostate radiation therapy affect patient health-related quality of life (QoL). We compared patient-reported GU QoL outcomes following 2 alternative urethral sparing stereotactic body radiation therapy regimens. Methods and Materials: Expanded Prostate Cancer Index Composite (EPIC)–26 GU scores were compared between 2 urethral sparing stereotactic body radiation therapy trials. The SPARK trial prescribed a “Monotherapy” dose of 36.25 Gy in 5 fractions to the prostate. The PROMETHEUS trial prescribed 2 phases: a 19- to 21-Gy in 2 fractions “Boost” to the prostate, followed by 46 Gy in 23 fractions or 36 Gy in 12 fractions. The biological effective dose (BED) for urethral toxicity was 123.9 Gy for Monotherapy and 155.8 to 171.2 Gy for Boost. Mixed effects logistic regression models were utilized to estimate the difference in the odds of a minimal clinically important change from baseline EPIC-26 GU score between regimens at each follow-up. Results: 46 Monotherapy and 149 Boost patients completed baseline EPIC-26 scoring. Mean EPIC-26 GU scores revealed statistically superior urinary incontinence outcomes for Monotherapy at 12 months (mean difference, 6.9; 95% confidence interval [CI], 1.6-12.1; P = .01) and 36 months (mean difference, 9.6; 95% CI, 4.1-15.1; P < .01). Monotherapy also revealed superior mean urinary irritative/obstructive outcomes at 12 months (mean difference, 6.9; 95% CI, 2.0-12.9; P < .01) and 36 months (mean difference, 6.3; 95% CI, 1.9-10.8; P < .01). For both domains and at all time points, the absolute differences were <10%. There were no significant differences in the odds of reporting a minimal clinically important change between regimens at any time point. Conclusions: Even in the presence of urethral sparing, the higher BED delivered in the Boost schedule may have a small adverse effect on GU QoL compared with Monotherapy. However, this did not translate to statistically significant differences in minimal clinically important changes. Whether the higher BED of the boost arm offers an efficacy advantage is being investigated in the Trans Tasman Radiation Oncology Group 18.01 NINJA randomized trial

    Validation of an MRI-only planning workflow for definitive pelvic radiotherapy

    Get PDF
    Purpose: Previous work on Magnetic Resonance Imaging (MRI) only planning has been applied to limited treatment regions with a focus on male anatomy. This research aimed to validate the use of a hybrid multi-atlas synthetic computed tomography (sCT) generation technique from a MRI, using a female and male atlas, for MRI only radiation therapy treatment planning of rectum, anal canal, cervix and endometrial malignancies. Patients and methods: Forty patients receiving radiation treatment for a range of pelvic malignancies, were separated into male (n = 20) and female (n = 20) cohorts for the creation of gender specific atlases. A multi-atlas local weighted voting method was used to generate a sCT from a T1-weighted VIBE DIXON MRI sequence. The original treatment plans were copied from the CT scan to the corresponding sCT for dosimetric validation. Results: The median percentage dose difference between the treatment plan on the CT and sCT at the ICRU reference point for the male cohort was − 0.4% (IQR of 0 to − 0.6), and − 0.3% (IQR of 0 to − 0.6) for the female cohort. The mean gamma agreement for both cohorts was &gt; 99% for criteria of 3%/2 mm and 2%/2 mm. With dose criteria of 1%/1 mm, the pass rate was higher for the male cohort at 96.3% than the female cohort at 93.4%. MRI to sCT anatomical agreement for bone and body delineated contours was assessed, with a resulting Dice score of 0.91 ± 0.2 (mean ± 1 SD) and 0.97 ± 0.0 for the male cohort respectively; and 0.96 ± 0.0 and 0.98 ± 0.0 for the female cohort respectively. The mean absolute error in Hounsfield units (HUs) within the entire body for the male and female cohorts was 59.1 HU ± 7.2 HU and 53.3 HU ± 8.9 HU respectively. Conclusions: A multi-atlas based method for sCT generation can be applied to a standard T1-weighted MRI sequence for male and female pelvic patients. The implications of this study support MRI only planning being applied more broadly for both male and female pelvic sites. Trial registration This trial was registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) (www.anzctr.org.au) on 04/10/2017. Trial identifier ACTRN12617001406392.</p

    Phase 2 Multicenter Study of Gantry-Based Stereotactic Radiotherapy Boost for Intermediate and High Risk Prostate Cancer (PROMETHEUS)

    Get PDF
    Objectives: To report feasibility, early toxicity, and PSA kinetics following gantry-based, stereotactic radiotherapy (SBRT) boost within a prospective, phase 2, multicenter study (PROMETHEUS: ACTRN12615000223538).Methods: Patients were treated with gantry-based SBRT, 19–20 Gy in two fractions delivered 1 week apart, followed by conventionally fractionated IMRT (46 Gy in 23 fractions). The study mandated MRI fusion for RT planning, rectal displacement, and intrafraction image guidance. Toxicity was prospectively graded using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAE v4).Results: Between March 2014 and July 2018, 135 patients (76% intermediate, 24% high-risk) with a median age of 70 years (range 53–81) were treated across five centers. Short course (≀6 months) androgen deprivation therapy (ADT) was used in 36% and long course in 18%. Rectal displacement method was SpaceOAR in 59% and Rectafix in 41%. Forty-two and ninety-three patients were treated at the 19 Gy and 20 Gy dose levels, respectively. Median follow-up was 24 months. Acute grade 2 gastrointestinal (GI) and urinary toxicity occurred in 4.4 and 26.6% with no acute grade 3 toxicity. At 6, 12, 18, 24, and 36 months post-treatment the prevalence of late grade ≄2 gastrointestinal toxicity was 1.6, 3.7, 2.2, 0, and 0%, respectively, and the prevalence of late grade ≄2 urinary toxicity was 0.8, 11, 12, 7.1, and 6.3%, respectively. Three patients experienced grade 3 late toxicity at 12 to 18 months which subsequently resolved to grade 2 or less. For patients not receiving ADT the median PSA value pre-treatment was 7.6 ug/L (1.1–20) and at 12, 24, and 36 months post-treatment was 0.86, 0.36, and 0.20 ug/L.Conclusions: Delivery of a gantry-based SBRT boost is feasible in a multicenter setting, is well-tolerated with low rates of early toxicity and is associated with promising PSA responses. A second transient peak in urinary toxicity was observed at 18 months which subsequently resolved. Follow-up is ongoing to document late toxicity, long-term patient reported outcomes, and tumor control with this approach

    Residential Radon and Brain Tumour Incidence in a Danish Cohort

    Get PDF
    BACKGROUND: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. OBJECTIVE: To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. METHODS: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals (CI) for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. RESULTS: Median estimated radon was 40.5 Bq/m(3). The adjusted IRR for primary brain tumour associated with each 100 Bq/m(3) increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58) and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. CONCLUSIONS: We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies
    • 

    corecore