173 research outputs found

    Research and development of hydrogen carrier based solutions for hydrogen compression and storage

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMIndustrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this fiel

    Research and development of hydrogen carrier based solutions for hydrogen compression and storage

    Get PDF
    Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this field

    Solid state hydrogen storage in alanates and alanate-based compounds: a review

    Get PDF
    The safest way to store hydrogen is in solid form, physically entrapped in molecular form in highly porous materials, or chemically bound in atomic form in hydrides. Among the different families of these compounds, alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997, when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review, the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li, Na, K, Ca, Mg, Y, Eu, and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performanc

    Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (II) Kinetic properties

    Get PDF
    Reaction kinetic behaviour and cycling stability of the 2LiBH4-MgH2 reactive hydride composite (Li-RHC) are experimentally determined and analysed as a basis for the design and development of hydrogen storage tanks. In addition to the determination and discussion about the properties; different measurement methods are applied and compared. The activation energies for both hydrogenation and dehydrogenation are determined by the Kissinger method and via the fitting of solid-state reaction kinetic models to isothermal volumetric measurements. Furthermore, the hydrogen absorption-desorption cycling stability is assessed by titration measurements. Finally, the kinetic behaviour and the reversible hydrogen storage capacity of the Li-RHC are discussed.Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; AlemaniaFil: Milanese, Chiara. Università degli Studi di Pavia; ItaliaFil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Girella, Alessandro. Università degli Studi di Pavia; ItaliaFil: Schiavo, Benedetto. Università degli Studi di Palermo; ItaliaFil: Lozano, Gustavo A.. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; AlemaniaFil: Capurso, Giovanni. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; AlemaniaFil: Von Colbe, José M. Bellosta. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; AlemaniaFil: Marini, Amedeo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Kabelac, Stephan. Leibniz Universität Hannover; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; AlemaniaFil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; Alemani

    Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (I) Thermodynamic and heat transfer properties

    Get PDF
    Thermodynamic and heat transfer properties of the 2LiBH4-MgH2 composite (Li-RHC) system are experimentally determined and studied as a basis for the design and development of hydrogen storage tanks. Besides the determination and discussion of the properties, different measurement methods are applied and compared to each other. Regarding thermodynamics, reaction enthalpy and entropy are determined by pressure-concentration-isotherms and coupled manometric-calorimetric measurements. For thermal diffusivity calculation, the specific heat capacity is measured by high-pressure differential scanning calorimetry and the effective thermal conductivity is determined by the transient plane source technique and in situ thermocell. Based on the results obtained from the thermodynamics and the assessment of the heat transfer properties, the reaction mechanism of the Li-RHC and the issues related to the scale-up for larger hydrogen storage systems are discussed in detail.Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Milanese, Chiara. University of Pavia; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Girella, Alessandro. University of Pavia; ItaliaFil: Schiavo, Benedetto. Universidad de Palermo; Argentina. Istituto per le Tecnologie Avanzate; ItaliaFil: Lozano, Gustavo A.. Helmholtz-Zentrum Geesthacht; Alemania. BASF; AlemaniaFil: Capurso, Giovanni. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Von Colbe, José M. Bellosta. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Marini, Amedeo. University of Pavia; ItaliaFil: Kabelac, Stephan. Leibniz Universität Hannover; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; Alemani

    CO2 reactivity with Mg2NiH4 synthesized by: In situ monitoring of mechanical milling

    Get PDF
    CO2 capture and conversion are a key research field for the transition towards an economy only based on renewable energy sources. In this regard, hydride materials are a potential option for CO2 methanation since they can provide hydrogen and act as a catalytic species. In this work, Mg2NiH4 complex hydride is synthesized by in situ monitoring of mechanical milling under a hydrogen atmosphere from a 2MgH2:Ni stoichiometric mixture. Temperature and pressure evolution is monitored, and the material is characterized, during milling in situ, thus providing a good insight into the synthesis process. The cubic polymorph of Mg2NiH4 (S.G. Fm3m) starts to be formed in the early beginning of the mechanical treatment due to the mechanical stress induced by the milling process. Then, after 25 hours of milling, Mg2NiH4 with a monoclinic (S.G. C12/c1) structure appears. The formation of the monoclinic polymorph is most likely related to the stress release that follows the continuous refinement of the material's microstructure. At the end of the milling process, after 60 hours, the as-milled material is composed of 90.8 wt% cubic Mg2NiH4, 5.7 wt% monoclinic Mg2NiH4, and 3.5 wt% remnant Ni. The as-milled Mg2NiH4 shows high reactivity for CO2 conversion into CH4. Under static conditions at 400 °C for 5 hours, the interactions between as-milled Mg2NiH4 and CO2 result in total CO2 consumption and in the formation of the catalytic system Ni-MgNi2-Mg2Ni/MgO. Experimental evidence and thermodynamic equilibrium calculations suggest that the global methanation mechanism takes place through the adsorption of C and the direct solid gasification towards CH4 formation.Fil: Grasso, María Laura. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Helmholtz-Zentrum Geesthacht GmbH; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Santoru, Antonio. Helmholtz-Zentrum Geesthacht GmbH; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht GmbH; AlemaniaFil: Pistidda, Claudio. Helmholtz-Zentrum Geesthacht GmbH; Alemani

    Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system

    Get PDF
    Ajuts: The authors are grateful to the Marie-Curie European Research Training Network (Contract MRTN-CT-2006-03 5366/COSY)In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH4)2 and the Ca(BH4)2 + MgH2 reactive hydride composite (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications.In this study, the addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous supression of CaB12H12. Structural characterization of the specimens was performed by means of in-situ Synchroton Radiation Power X-ray diffraction (SR-PXD) and 11B {1H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 system have not supressed completely the formation of CaB12H12 and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite materia
    corecore