13 research outputs found
Calibration of trap stiffness and viscoelasticity in polymer solutions
We present an experimental demonstration of a method using optical tweezers proposed by Fischer and Berg-Sorensen for measuring viscoelasticity using optical tweezers. It is based on a sinusoidal oscillation of the liquid in combination with force measurements using optical tweezers. We verify the method by applying it to measurements in water, glycerol and polyethylene oxide (PEO)
Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel
Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues
Analysis of the Dynamics of Neurosecretory Vesicles by Optical Tweezers and Image Processing
We present the analysis of chromaffin vesicles' dynamics during exocytosis. Optical tweezers combined with fluorescence for noninvasive microviscometry in cells and confocal imaging for trajectory analysis were used for this study. By the use of optical tweezers and fluorescent we applied the oscillation method propose by Fischer et al for measuring the intracellular vis- coelastic properties in cells. A sinusoidally moving optical trap was used to drive intracellular optical trapped vesicles present in chromaffin cells in order to obtain local information about the viscoelastic liquid surrounding the vesicles. For probing this technique measurement were performed on water, glycerol and PEO, then in cells
Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening
Adenosine A(1) and prostaglandin E receptor 3 receptors mediate global airway contraction after local epithelial injury.
Epithelial injury and airway hyperresponsiveness are prominent features of asthma. We have previously demonstrated that laser ablation of single epithelial cells immediately induces global airway constriction through Ca(2+)-dependent smooth muscle shortening. The response is mediated by soluble mediators released from wounded single epithelial cells; however, the soluble mediators and signaling mechanisms have not been identified. In this study, we investigated the nature of the epithelial-derived soluble mediators and the associated signaling pathways that lead to the L-type voltage-dependent Ca(2+) channel (VGCC)-mediated Ca(2+) influx. We found that inhibition of adenosine A1 receptors (or removal of adenosine with adenosine deaminase), cyclooxygenase (COX)-2 or prostaglandin E receptor 3 (EP3) receptors, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor (PDGFR) all significantly blocked Ca(2+) oscillations in smooth muscle cells and airway contraction induced by local epithelial injury. Using selective agonists to activate the receptors in the presence and absence of selective receptor antagonists, we found that adenosine activated the signaling pathway A1R→EGFR/PDGFR→COX-2→EP3→VGCCs→calcium-induced calcium release, leading to intracellular Ca(2+) oscillations in airway smooth muscle cells and airway constriction
Noninvasive measurement of intracellular viscoelastic properties
We are exploring a biological application of optical tweezers with fluorescence imaging for microrheometry. Measurement of the power spectrum of Brownian motion of a trapped probe particle or vesicle provides information on the viscoelastic properties of the surrounding medium which can change in response to cellular processes or the effect of drugs
Local small airway epithelial injury induces global smooth muscle contraction and airway constriction
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening
Molecular interference of fibrin's divalent polymerization mechanism enables modulation of multiscale material properties.
Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular 'interference' of fibrin's native polymerization mechanism. We have previously reported that engagement of fibrin's polymerization 'hole b', also known as 'b-pockets', through PEGylated complementary 'knob B' mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics