25 research outputs found

    The Contribution of Accessory Toxins of Vibrio cholerae O1 El Tor to the Proinflammatory Response in a Murine Pulmonary Cholera Model

    Get PDF
    The contribution of accessory toxins to the acute inflammatory response to Vibrio cholerae was assessed in a murine pulmonary model. Intranasal administration of an El Tor O1 V. cholerae strain deleted of cholera toxin genes (ctxAB) caused diffuse pneumonia characterized by infiltration of PMNs, tissue damage, and hemorrhage. By contrast, the ctxAB mutant with an additional deletion in the actin-cross-linking repeats-in-toxin (RTX) toxin gene (rtxA) caused a less severe pathology and decreased serum levels of proinflammatory molecules interleukin (IL)-6 and murine macrophage inflammatory protein (MIP)-2. These data suggest that the RTX toxin contributes to the severity of acute inflammatory responses. Deletions within the genes for either hemagglutinin/protease (hapA) or hemolysin (hlyA) did not significantly affect virulence in this model. Compound deletion of ctxAB, hlyA, hapA, and rtxA created strain KFV101, which colonized the lung but induced pulmonary disease with limited inflammation and significantly reduced serum titers of IL-6 and MIP-2. 100% of mice inoculated with KFV101 survive, compared with 20% of mice inoculated with the ctxAB mutant. Thus, the reduced virulence of KFV101 makes it a prototype for multi-toxin deleted vaccine strains that could be used for protection against V. cholerae without the adverse effects of the accessory cholera toxins

    Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis Independent of Chronic Liver Injury

    Get PDF
    Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV (“preS2 mutant”) that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged—2-year-old—mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines—expressing either mutant or wildtype HBV—therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC

    Hepatocarcinogenesis Driven by GSNOR Deficiency Is Prevented by iNOS Inhibition

    No full text
    Hepatocellular carcinoma (HCC) is one of the most common and deadly human cancers and it remains poorly managed. Human HCC development is often associated both with elevated expression of inducible nitric oxide synthase (iNOS) and with genetic deletion of the major denitrosylase S-nitrosoglutathione reductase (GSNOR/ADH5). However, their causal involvement in human HCC is not established. In mice, GSNOR deficiency causes S-nitrosylation and depletion of the DNA repair protein O(6)-alkylguanine-DNA-alkyltransferase (AGT) and increases rates of both spontaneous and DEN carcinogen-induced HCC. Here we report that administration of 1400W, a potent and highly selective inhibitor of iNOS, blocked AGT depletion and rescued the repair of mutagenic O(6)-ethyldeoxyguanosines following DEN challenge in livers of GSNOR-deficient (GSNOR(−/−)) mice. Notably, short-term iNOS inhibition following DEN treatment had little effect on carcinogenesis in wild-type mice, but was sufficient to reduce HCC multiplicity, maximal size, and burden in GSNOR(−/−) mice to levels comparable with wild-type controls. Furthermore, increased HCC susceptibility in GSNOR(−/−) mice was not associated with an increase in interleukin 6, tumor necrosis factor-α, oxidative stress, or hepatocellular proliferation. These results suggested that GSNOR deficiency linked to defective DNA damage repair likely acts at the tumor initiation stage to promote HCC carcinogenesis. Together, our findings provide the first proof of principle that HCC development in the context of uncontrolled nitrosative stress can be blocked by pharmacological inhibition of iNOS, possibly providing an effective therapy for HCC patients

    A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2

    No full text
    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant disorder characterized by the age-dependent development of focal arteriovenous malformations and telangiectases. HHT type 2 is caused by loss of function mutations in activin receptor-like kinase 1 (ACVRL1 or ALK1). However, the factors that initiate lesion formation and those that influence disease progression remain unknown. Because heterozygous mice contain the appropriate genotype for an animal model of this disorder, mice heterozygous for a loss-of-function mutation in Acvrl1 were carefully examined for an HHT-like phenotype. These mice developed age-dependent vascular lesions in the skin, extremities, oral cavity and in the internal organs (lung, liver, intestine, spleen and brain), similar to those seen in HHT patients. Major histopathological features of the lesions included thin-walled dilated vessels in close proximity to each other, hemorrhage and fibrosis. Similar to HHT patients, the mice also exhibited gastrointestinal bleeding, as evidenced by positive fecal occult blood tests. An Acvrl1+/- mouse with profound liver involvement also displayed a secondary cardiac phenotype, similar to that observed in human patients. The similarity of affected organs, age-dependent penetrance, histological similarity of the lesions and recapitulation of a secondary phenotype suggest that the Acvrl1+/- mice are an appropriate animal model for the identification of additional genetic and environmental factors that cause pathology in HHT type 2 patients. In addition, studies utilizing this animal model can yield valuable information on the role of ALK1 in maintenance of adult vascular architecture including arteriovenous identity

    Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats

    No full text
    In women, age-related bone loss is associated with increased risk of bone fracture. Existing therapies are associated with severe side effects; thus, there is a need to find alternative medicines with less or optimal side effects. Cissus quadrangularis (CQ), an Ayurvedic medicine used to enhance fracture healing, was tested for its bone protective properties and studied to discern the mechanism by which it is beneficial to bone. Female Sprague Dawley rats were either sham operated or ovariectomized and were fed CQ for 3 months. Several biochemical markers, cytokines and hormones were assayed. Femur, tibia and lumbar vertebrae were subjected to pQCT and µCT densitometry. MC3T3 cells were cultured, treated with CQ and used to analyze miRNA content and subjected to qPCR for gene expression analysis related to bone metabolism. CQO rats showed protected bone mass and microarchitecture of trabecular bone in the distal femoral metaphysis and the proximal tibial metaphysis. The lumbar vertebrae, however, showed no significant changes. Serum protein expression levels of P1NP increased and Trap5b and CTX levels decreased with in vivo CQ treatment. Some influence on the anti- and pro-inflammatory markers was also observed. Significantly high level of estradiol in the CQO rats was observed. In vitro expression of a few genes related to bone metabolism showed that osteocalcin increased significantly. The other genes—collagen I expression, SPP1, BMP2, DCAT1—decreased significantly. Certain miRNA that regulate bone turnover using the BMP pathway and Wnt signaling pathways were upregulated by CQ. qPCR after acute treatment with CQ showed significantly increased levels of osteocalcin and decreased levels of Wnt/β catenin antagonist DCAT1. Overall, CQ protected the microarchitecture of the long bones from ovariectomy-induced bone loss. This may be because of decreased inflammation and modulation through the BMP and Wnt signaling pathways. We conclude that CQ is a potential therapeutic agent to treat postmenopausal osteoporosis with no side effects
    corecore