333 research outputs found

    Virtual reconstruction of spanish cathedrals: the sound of choir and other weakly coupled volumes in Seville Cathedral

    Get PDF
    The paper takes advantage of a recent detailed survey of Spanish Cathedrals to investigate the acoustic differences between choir and other weakly coupled volumes in very large spaces. Experimental measurements carried out in a limited number of source-receiver combinations confirmed the existence of double slope behaviour, which markedly influences such spaces. The analysis of the impulse responses was carried out by means of Bayesian parameter estimation, in order to correctly identify the individual decay times. The subjective effect of such coupling was first discussed, showing that having steeper initial decay may significantly contribute to clarity and intelligibility without affecting reverberation. Then, in order to better clarify the role of the architectural features defining such spaces, a geometrical acoustic model of the Cathedral of Seville was performed and a more refined analysis was carried out by analysing a tightly spaced grid of receivers inside the sub space and investigating point by point variations. Results showed that further variations appeared inside the sub-volume, depending on source receiver distance, but the double slope behaviour was clearly visible and characterised the listening experience inside the choir

    Lichen amyloidosus: a new therapeutic approach.

    Get PDF
    The result of topical treatment by dimethyl sulphoxide (DMSO) in a patient with lichen amyloidosus is reported. Itching improved within five days of therapy. Remarkable flattening of the papules was obtained within two weeks. The clinical result was confirmed by histological examination which revealed partially disappearance of amyloid deposits

    Acquired hypertrichosis lanuginosa: a case report.

    Get PDF
    The authors present a patient with hypertrichosis lanuginosa acquisita without associated malignancy

    Bullosis diabeticorum: a case report.

    Get PDF
    A case of an unusual bullous eruption (bullosis diabeticorum) occurring in a diabetic is reported. Clinical and histological features and possible pathogenetic mechanisms are discussed

    Acoustically coupled volumes in the cathedrals of Murcia and Seville

    Get PDF
    Cathedrals are complex monuments built through the repetition of volumes separated by arches, vaults, and columns, in addition to a great variety of lateral chapels. In the so-called "Spanish mode" the choir is situated in the centre of the main nave and generally constitutes a more absorbent volume connected by an acoustically transparent opening with the rest of the cathedral. This space, together with the lateral chapels, can present the phenomenon of acoustic coupling. In this work, as a manifestation of this coupling, an analysis is performed, by means of standardised parameters and through the application of Bayesian methods, on the non-linearity of the energy decay curves of the impulse responses registered in situ in the Vélez Chapel of the Cathedral of Murcia, the Royal Chapel of the Cathedral of Seville, and in their respective choirsLas catedrales son monumentos complejos construidos mediante la repetición de volúmenes separados por arcos, bóvedas, columnas..., así como gran variedad de capillas laterales. En el denominado “modo español” el coro se sitúa en el centro de la nave principal y constituye generalmente un volumen más absorbente conectado mediante una apertura acústicamente transparente con el resto de la catedral. Este espacio, así como las capillas laterales, pueden presentar el fenómeno de acoplamiento acústico. En este trabajo, como manifestación de este acoplamiento, se analiza la no linealidad de las curvas de decaimiento energético mediante parámetros estandarizados y utilizando métodos bayesianos, de las respuestas al impulso registradas in situ en la Capilla de los Vélez de la Catedral de Murcia, la Capilla Real de la Catedral de Sevilla y en sus respectivos coro

    Identifying acoustically coupled volumes in the Cathedral of Toledo, Spain

    Get PDF
    Cathedrals are large monuments combined with great geometrical complexity due to different architectural styles, commonly featuring modifications resulting from additions and adaptations to liturgical practice in various historical periods. In the so-called "Spanish mode", the choir is situ-ated in the centre of the main nave and generally constitutes a more absorbent volume connected by an acoustically transparent opening with the rest of the cathedral. This space, together with the presbytery and the lateral chapels, can present the phenomenon of acoustic coupling. Taking advantage of a recent acoustic survey carried out in Toledo cathedral, the presence of such non-uniform acoustic energy distribution is investigated. By means of standardised parameters and the application of Bayesian methods, an analysis is performed of the non-linearity of the energy decay curves of the impulse responses registered in the cathedralLas catedrales son grandes monumentos con una gran complejidad geométrica debido a los diferentes estilos arquitectónicos, consecuencia de las modificaciones resultantes de adiciones y adaptaciones a diferentes períodos históricos y a la evolución de la práctica litúrgica. En el llamado "modo español" el coro está situado en el centro de la nave principal y, generalmente, constituye un volumen más absorbente conectado por una abertura acústicamente transparente con el resto de la catedral. Este espacio, junto con el presbiterio y las capillas laterales, pueden presentar el fenómeno del acoplamiento acústico. Aprovechando una reciente campaña acústica llevada a cabo en la catedral de Toledo, se investiga la presencia de dicho fenómeno. El análisis se realiza calculando parámetros normalizados y aplicando métodos bayesianos para caracteri-zar la no linealidad de las curvas de decaimiento de energía derivadas de las respuestas al im-pulso registradas en la catedra

    Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers

    Full text link
    [EN] In recent years, the interest in reusing recycled fibers as building materials has been growing as a consequence of their ability to reduce the production of waste and the use of virgin resources, taking advantage of the potential that fibrous materials may offer to improve thermal and acoustic comfort. Composite panels, made of 100% wool waste fibers and bound by means of either a chitosan solution and a gum Arabic solution, were tested and characterized in terms of acoustic and non-acoustic properties. Samples with a 5 cm thickness and different density values were made to investigate the influence of flow resistivity on the final performance. Experimental results demonstrated that the samples had thermal conductivity ranging between 0.049 and 0.060 W/(m K), well comparable to conventional building materials. Similarly, acoustic results were very promising, showing absorption coefficients that, for the given thickness, were generally higher than 0.5 from 500 Hz on, and higher than 0.9 from 1 kHz on. Finally, the effects of the non-acoustic properties and of the air gap behind the samples on the acoustic behavior were also analyzed, proving that the agreement with absorption values predicted by empirical models was also very good.C.R. scholarship has been funded by the Italian Ministry of Education, University and Research (MIUR), within the National Research Program "PON Ricerca e Innovazione 2014-2020" (grant DOT1748713 N.5).Rubino, C.; Bonet-Aracil, M.; Gisbert Paya, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Cantó, M.; Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials. 12(23):1-18. https://doi.org/10.3390/ma12234020S1181223Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016Hesterberg, T. W., & Hart, G. A. (2001). Synthetic Vitreous Fibers: A Review of Toxicology Research and Its Impact on Hazard Classification. Critical Reviews in Toxicology, 31(1), 1-53. doi:10.1080/20014091111668Bakatovich, A., Davydenko, N., & Gaspar, F. (2018). Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy and Buildings, 180, 72-82. doi:10.1016/j.enbuild.2018.09.032Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022Kymäläinen, H.-R., & Sjöberg, A.-M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261-1269. doi:10.1016/j.buildenv.2007.03.006Zhou, X., Zheng, F., Li, H., & Lu, C. (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074. doi:10.1016/j.enbuild.2010.01.020Ashour, T., Georg, H., & Wu, W. (2011). Performance of straw bale wall: A case of study. Energy and Buildings, 43(8), 1960-1967. doi:10.1016/j.enbuild.2011.04.001Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114. doi:10.1016/j.apacoust.2017.09.012Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007Wei, K., Lv, C., Chen, M., Zhou, X., Dai, Z., & Shen, D. (2015). Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy and Buildings, 87, 116-122. doi:10.1016/j.enbuild.2014.11.026Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029Rubino, C., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2018). Textile wastes in building sector: A review. Modelling, Measurement and Control B, 87(3), 172-179. doi:10.18280/mmc_b.870309Ricciardi, P., Belloni, E., & Cotana, F. (2014). Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment. Applied Energy, 134, 150-162. doi:10.1016/j.apenergy.2014.07.112Barbero-Barrera, M. del M., Pombo, O., & Navacerrada, M. de los Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26-33. doi:10.1016/j.compositesb.2016.03.013Echeverria, C. A., Pahlevani, F., Handoko, W., Jiang, C., Doolan, C., & Sahajwalla, V. (2019). Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 143, 1-14. doi:10.1016/j.resconrec.2018.12.014Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210Muñoz, I., Rodríguez, C., Gillet, D., & M. Moerschbacher, B. (2017). Life cycle assessment of chitosan production in India and Europe. The International Journal of Life Cycle Assessment, 23(5), 1151-1160. doi:10.1007/s11367-017-1290-2Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C. J. S., Leclaire, P., & Michaud, P. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244-250. doi:10.1016/j.indcrop.2014.04.022El Hage, R., Khalaf, Y., Lacoste, C., Nakhl, M., Lacroix, P., & Bergeret, A. (2018). A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. Journal of Applied Polymer Science, 136(13), 47306. doi:10.1002/app.47306Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021Abuarra, A., Hashim, R., Bauk, S., Kandaiya, S., & Tousi, E. T. (2014). Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards. Materials & Design, 60, 108-115. doi:10.1016/j.matdes.2014.03.032Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169. doi:10.1016/j.enbuild.2015.01.056Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123Pfretzschner, J., & Mª. Rodriguez, R. (1999). Acoustic properties of rubber crumbs. Polymer Testing, 18(2), 81-92. doi:10.1016/s0142-9418(98)00009-9Berryman, J. G. (1980). Confirmation of Biot’s theory. Applied Physics Letters, 37(4), 382-384. doi:10.1063/1.91951Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064Jerman, M., & Černý, R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings, 53, 39-46. doi:10.1016/j.enbuild.2012.07.002Jerman, M., Palomar, I., Kočí, V., & Černý, R. (2019). Thermal and hygric properties of biomaterials suitable for interior thermal insulation systems in historical and traditional buildings. Building and Environment, 154, 81-88. doi:10.1016/j.buildenv.2019.03.020Gustafsson, S. E. (1991). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 62(3), 797-804. doi:10.1063/1.1142087Del Rey, R., Berto, L., Alba, J., & Arenas, J. P. (2015). Acoustic characterization of recycled textile materials used as core elements in noise barriers. Noise Control Engineering Journal, 63(5), 439-447. doi:10.3397/1/376339Piégay, C., Glé, P., Gourdon, E., Gourlay, E., & Marceau, S. (2018). Acoustical model of vegetal wools including two types of fibers. Applied Acoustics, 129, 36-46. doi:10.1016/j.apacoust.2017.06.021Carosio, F., & Alongi, J. (2018). Flame Retardant Multilayered Coatings on Acrylic Fabrics Prepared by One-Step Deposition of Chitosan/Montmorillonite Complexes. Fibers, 6(2), 36. doi:10.3390/fib6020036No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. Journal of Food Science, 72(5), R87-R100. doi:10.1111/j.1750-3841.2007.00383.

    Inadequate effect of helium-neon laser on venous leg ulcers.

    Get PDF
    A study to determine whether laser radiation of low-power photon density would really affect the healing of venous leg ulcers in man was performed. The ulcers were irradiated 6 d per wk with a helium-neon laser (wavelength 632.8 nm). Energy densities of 1 J/cm2 (16 patients) and 4 J/cm2 (17 patients) were administered daily. The control group (28 patients) received only antiseptic local compresses as treatment. No statistically significant difference between the laser-treated group and the control group was found. It was concluded that helium-neon laser radiation has no advantages over standard local treatments, at least with the dosage schedules and protocols employed
    corecore