24 research outputs found

    An integrative identification guide to the Hydrozoa (Cnidaria) of Bocas del Toro, Panama

    Get PDF
    This work is the first attempt to assess the biodiversity of the Hydrozoa in the Archipiélago de Bocas del Toro (Panamá, Caribbean Sea) using morphology and molecular taxonomy, and to produce field identification tools to help future identification and monitoring efforts in the area. We sampled, identified, vouchered, and barcoded 112 specimens of Hydrozoa from shallow coastal waters (0–22 m depth) in the Archipiélago de Bocas del Toro. The specimens belong to 70 taxa, of which 53 were identified at the species level, and 17 were identified at the genus or family level. We produced 64 sequences of the large ribosomal subunit of the mitochondrial RNA (mt lsu-rRNA, 16S), the genetic marker generally used for barcoding Hydrozoa. We updated the local checklist that now comprises 118 species, and produced 87 detailed taxon identification tables that display species descriptions augmented with pictures, geographic distribution (worldwide and in Bocas del Toro), GenBank accession numbers for the 16S mitochondrial gene, and a synopsis of the families they belong to

    Animal Model of Antibiotic Induced Gut Microbiota Dysbiosis

    No full text
    Background: The gut harbors a diverse ecosystem consisting predominantly of bacteria [...

    Dietary Fibre and Organic Acids in Kiwifruit Suppress Glycaemic Response Equally by Delaying Absorption—A Randomised Crossover Human Trial with Parallel Analysis of 13C-Acetate Uptake

    No full text
    Non-sugar components of kiwifruit reduce the amplitude of the glycaemic response to co-consumed cereal starch. We determined the relative contribution of different non-sugar kiwifruit components to this anti-glycaemic effect. Healthy participants (n = 9) ingested equal carbohydrate meals containing 20 g starch as wheat biscuit (WB, 30 g), and the sugar equivalent of two kiwifruit (KFsug, 20.4 g), either intrinsic or added as glucose, fructose and sucrose (2:2:1). The meals were WB+KFsug (control, no non-sugar kiwifruit components), WB + whole kiwifruit pulp (WB+KF), WB + neutralised kiwifruit pulp (WB+KFneut), WB + low-fibre kiwifruit juice (WB+KFjuice) and WB+KFsug + kiwifruit organic acids (WB+KFsug+OA). All meals were spiked with 100 mg sodium [1-13C] acetate to measure intestinal absorption. Each participant ingested all meals in random order. Blood glucose and breath 13CO2 were measured at ingestion and at 15 min intervals up to 180 min. Compared with WB+KFsug, whole kiwifruit pulp (WB+KF) almost halved glycaemic response amplitude (p < 0.001), reduced incremental area under the blood glucose response curve (iAUC) at 30 min (peak) by 50% (p < 0.001), and averted late postprandial hypoglycaemia. All other treatments suppressed response amplitude half as much as whole kiwifruit and averted acute hypoglycaemia, with little effect on iAUC. Effects on 13CO2 exhalation paralleled effects on blood glucose (R2 = 0.97). Dietary fibre and organic acids contributed equally to the anti-glycaemic effect of kiwifruit by reducing intestinal absorption rate. Kiwifruit flesh effectively attenuates glycaemic response in carbohydrate exchange, as it contains fructose, dietary fibre and organic acids

    Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice

    No full text
    * Article free to read on publisher website. Abstract Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P <0.05). In trial 2, the inflammation marker prostaglandin E2 (PGE2) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice

    Microbiota composition of breast milk from women of different ethnicity from the Manawatu—Wanganui region of New Zealand

    No full text
    Human breastmilk components, the microbiota and immune modulatory proteins have vital roles in infant gut and immune development. In a population of breastfeeding women (n = 78) of different ethnicities (Asian, Māori and Pacific Island, New Zealand European) and their infants living in the Manawatu–Wanganui region of New Zealand, we examined the microbiota and immune modulatory proteins in the breast milk, and the fecal microbiota of mothers and infants. Breast milk and fecal samples were collected over a one-week period during the six to eight weeks postpartum. Breast milk microbiota differed between the ethnic groups. However, these differences had no influence on the infant’s gut microbiota composition. Based on the body mass index (BMI) classifications, the mother’s breast milk and fecal microbiota compositions were similar between normal, overweight and obese individuals, and their infant’s fecal microbiota composition also did not differ. The relative abundance of bacteria belonging to the Bacteroidetes phylum was higher in feces of infants born through vaginal delivery. However, the bacterial abundance of this phylum in the mother’s breast milk or feces was similar between women who delivered vaginally or by cesarean section. Several immune modulatory proteins including cytokines, growth factors, and immunoglobulin differed between the BMI and ethnicity groups. Transforming growth factor beta 1 and 2 (TGFβ1, TGFβ2) were present in higher concentrations in the milk from overweight mothers compared to those of normal weight. The TGFβ1 and soluble cluster of differentiation 14 (sCD14) concentrations were significantly higher in the breast milk from Māori and Pacific Island women compared with women from Asian and NZ European ethnicities. This study explores the relationship between ethnicity, body mass index, mode of baby delivery and the microbiota of infants and their mothers and their potential impact on infant health

    Microbiota composition of breast milk from women of different ethnicity from the Manawatu—Wanganui region of New Zealand

    Get PDF
    Human breastmilk components, the microbiota and immune modulatory proteins have vital roles in infant gut and immune development. In a population of breastfeeding women (n = 78) of different ethnicities (Asian, Māori and Pacific Island, New Zealand European) and their infants living in the Manawatu–Wanganui region of New Zealand, we examined the microbiota and immune modulatory proteins in the breast milk, and the fecal microbiota of mothers and infants. Breast milk and fecal samples were collected over a one-week period during the six to eight weeks postpartum. Breast milk microbiota differed between the ethnic groups. However, these differences had no influence on the infant’s gut microbiota composition. Based on the body mass index (BMI) classifications, the mother’s breast milk and fecal microbiota compositions were similar between normal, overweight and obese individuals, and their infant’s fecal microbiota composition also did not differ. The relative abundance of bacteria belonging to the Bacteroidetes phylum was higher in feces of infants born through vaginal delivery. However, the bacterial abundance of this phylum in the mother’s breast milk or feces was similar between women who delivered vaginally or by cesarean section. Several immune modulatory proteins including cytokines, growth factors, and immunoglobulin differed between the BMI and ethnicity groups. Transforming growth factor beta 1 and 2 (TGFβ1, TGFβ2) were present in higher concentrations in the milk from overweight mothers compared to those of normal weight. The TGFβ1 and soluble cluster of differentiation 14 (sCD14) concentrations were significantly higher in the breast milk from Māori and Pacific Island women compared with women from Asian and NZ European ethnicities. This study explores the relationship between ethnicity, body mass index, mode of baby delivery and the microbiota of infants and their mothers and their potential impact on infant health
    corecore