102 research outputs found
Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin
Side effects and resistance of cancer cells to cisplatin are major drawbacks to its application, and recently, the possibility of replacing cisplatin with nanocompounds has been considered. Most chemotherapeutic agents are administered intravenously, and comparisons between the interactions of platinum nanoparticles (NP-Pt) and cisplatin with blood compartments are important for future applications. This study investigated structural damage, cell membrane deformation and haemolysis of chicken embryo red blood cells (RBC) after treatment with cisplatin and NP-Pt. Cisplatin (4 μg/ml) and NP-Pt (2,6 μg/ml), when incubated with chicken embryo RBC, were detrimental to cell structure and induced haemolysis. The level of haemolytic injury was increased after cisplatin and NP-Pt treatments compared to the control group. Treatment with cisplatin caused structural damage to cell membranes and the appearance of keratocytes, while NP-Pt caused cell membrane deformations (discoid shape of cells was lost) and the formation of knizocytes and echinocytes. This work demonstrated that NP-Pt have potential applications in anticancer therapy, but potential toxic side effects must be explored in future preclinical research
Long term influence of carbon nanoparticles on health and liver status in rats
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects
Silver and graphenic carbon nanostructures differentially influence the morphology and viabilityof cardiac progenitor cells
The characteristic features of nanomaterials provide rich opportunities for a broad range of applications due to their different physicochemical properties. Nanocolloidal silver and graphenic carbon materials differ in most physicochemical characteristics, except for their nanodimensions. Since there is a growing demand for stem cell therapies for coronary disorders, examining cardiac progenitor cells (CPC) in terms of their response to nanostructure treatment seems to be a reasonable approach. Morphological studies and viability assessments were performed with CPC in vitro, treated with small concentrations of silver nanoparticles (AgNP), hierarchical nanoporous graphenic carbon (HNC) and their mixtures. A viability test confirmed the morphological assessment of CPC treated with AgNP and HNC; moreover, the action of both nanomaterials was time-dependent and dose-dependent. For AgNP, between the two of the applied concentrations lies a border between their potential beneficial effect and toxicity. For HNC, at a lower concentration, strong stimulation of cell viability was noted, whereas a higher dosage activated their differentiation. It is necessary to perform further research examining the mechanisms of the action of AgNP and especially of unexplored HNC, and their mixtures, on CPC and other cells
Diamond nanoparticles modity curcumin activity:<i>in vitro</i> studies on cancer and normal cells and <i>in ovo</i> studies on chicken embryo model
Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent
Biodistribution of a high dose of diamond, graphite, and graphene oxide nanoparticles after multiple intraperitoneal injections in rats
Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat’s interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems
In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma
Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission elec tron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy
- …