281 research outputs found
Design of an Optical Device Based on Kirigami Approach
The aim of this work was to design a kirigami-based metamaterial with optical properties. This idea came from the necessity of a study that can improve common camouflage techniques to yield a product that is cheap, light, and easy to manufacture and assemble. The author investigated the possibility of exploiting a rotation to achieve transparency and color changing. One of the most important examples of a kirigami structure is a geometry based on rotating squares, which is a one-degree-of-freedom mechanism. In this study, light polarization and birefringence were exploited to obtain transparency and color-changing properties using two polarizers and common cellophane tape. These elements were assembled with a rotating-square structure that allowed the rotation of a polarizer placed on the structure with respect to a fixed polarizer equipped with cellophane layers
CFRP Fatigue Damage Detection by Thermal Methods
none3In this work, the fatigue damage of CFRP uniaxial composite specimens were studied using thermal methods to determine the fatigue behavior. The aim was to evaluate the fatigue damage as a function of the number of cycles. Consequently, the damage process was studied in terms of a global indicator, considering the stiffness decay, and in terms of local parameters, considering the evolution of temperature maps acquired during the fatigue tests. A direct correlation between the damage index, corresponding to 90% of the fatigue life, and the temperature variation of the most stressed area was found. Another parameter taken into consideration was the heating rate during the
application of the first thousands cycles. This parameter was proportional to the stress amplitude, making it a useful parameter since it refers to the initial part of the specimen fatigue life.Marta De Giorgi; Riccardo Nobile; Fania PalanoDE GIORGI, Marta; Nobile, Riccardo; Palano, Fani
kf Evaluation in GFRP Composites by Thermography
Since the presence of a notch in a mechanical component causes a reduction in the fatigue strength, it is important to know the kf value for a given notch geometry and material. This parameter is fundamental in the fatigue design of aeronautical components that are mainly made of composites. kf is available in the literature for numerous types of notch but only for traditional materials such as metals. This paper presents a new practice, based on thermographic data, for the determination of the fatigue notch coefficient kf in composite notched specimens. The innovative aspect of this study is therefore to propose the application on composite materials of a new thermographic procedure to determine kf for several notch geometries: circular, U and V soft and severe notches. It was calculated, for each type of notch, as the ratio between the fatigue limits obtained on the cold and hot zone corresponding to the smooth and notched specimen, respectively. Consequently, this research activity provides, for the first time, a little database of kf for two particular typologies of composite materials showing a fast way to collect further values for different laminates and notch geometries
Numerical and experimental validation of SMArt thermography for the inspection of wind blade composite laminate
none3noAn innovative active thermography technique is proposed for the inspection of typical wind blade material. The proposed
technique is based on the use of a multifunctional material obtained adding a grid of Shape Memory Alloy wires, which
would serve also as a protection against lightning, to a traditional glass fibre composite panel. This technique, called
SMArt thermography, which exploits the SMA wires as internal heat sources, has been compared to a traditional pulsed
thermography in the case of a representative panel of unidirectional glass fibre and epoxy matrix with embedded SMA
wires and artificial defects. The experimental results of the two techniques are reported and compared to the result of a
numerical FEM transient model, in order to establish the reliability and the detectability limit of the proposed technique.
The FEM model has been proven to be a useful tool for the definition of the multifunctional material at a design stage.openMarta De Giorgi; Riccardo Nobile; Andrea SaponaroDE GIORGI, Marta; Nobile, Riccardo; Saponaro, Andre
CDW aluminium joints welding and optimisation with NDT/mechanical testing
This work investigates the possibility to apply the improved hybrid capacitor discharge welding (CDW) process, based on projection welding principles, to aluminium alloy Al 5754. The CDW process is an electrical resistance welding technology, realised with high-intensity current pulses discharged by large capacitors. The innovative aspect is the effective possibility to weld aluminium alloys with CDW process and improve the mechanical weld characteristics and the presence of defects as a function of the technological parameters; intrinsic CDW process characteristics need to be investigated on the basis of interaction between the technological and geometrical aspects and the related mechanical properties, in order to improve welding shape and reduce defect size. In order to optimise the process, visual and ultrasonic inspections of the most significant welded joints were performed, and residual stress values were checked; in addition, high-cycle fatigue tests after room temperature tensile tests were executed to optimise the weldments
Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma
Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC).The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p<0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and metastatic melanomas.Our data suggest that cell-free tumor DNA and CTCs represent two complementary aspects of the liquid biopsy which may improve the diagnosis and the clinical management of melanoma patients
Multiparametric analysis of cell-free DNA in melanoma patients.
Cell-free DNA in blood (cfDNA) represents a promising biomarker for cancer diagnosis. Total cfDNA concentration showed a scarce discriminatory power between patients and controls. A higher specificity in cancer diagnosis can be achieved by detecting tumor specific alterations in cfDNA, such as DNA integrity, genetic and epigenetic modifications.The aim of the present study was to identify a sequential multi-marker panel in cfDNA able to increase the predictive capability in the diagnosis of cutaneous melanoma in comparison with each single marker alone. To this purpose, we tested total cfDNA concentration, cfDNA integrity, BRAF(V600E) mutation and RASSF1A promoter methylation associated to cfDNA in a series of 76 melanoma patients and 63 healthy controls. The chosen biomarkers were assayed in cfDNA samples by qPCR. Comparison of biomarkers distribution in cases and controls was performed by a logistic regression model in both univariate and multivariate analysis. The predictive capability of each logistic model was investigated by means of the area under the ROC curve (AUC). To aid the reader to interpret the value of the AUC, values between 0.6 and 0.7, between 0.71 and 0.8 and greater than 0.8 were considered as indicating a weak predictive, satisfactory and good predictive capacity, respectively. The AUC value for each biomarker (univariate logistic model) was weak/satisfactory ranging between 0.64 (BRAF(V600E)) to 0.85 (total cfDNA). A good overall predictive capability for the final logistic model was found with an AUC of 0.95. The highest predictive capability was given by total cfDNA (AUC:0.86) followed by integrity index 180/67 (AUC:0.90) and methylated RASSF1A (AUC:0.89).An approach based on the simultaneous determination of three biomarkers (total cfDNA, integrity index 180/67 and methylated RASSF1A) could improve the diagnostic performance in melanoma
Flood Consequences of LandâUse Changes at a Ski Resort: Overcoming a Geomorphological Threshold (PortainĂ©, Eastern Pyrenees, Iberian Peninsula)
The sensitive mountain catchment of PortainĂ© (Eastern Pyrenees, Iberian Peninsula) has recently experienced a significant change in its torrential dynamics due to human disturbances. The emplacement of a ski resort at the headwaters led to the surpassing of a geomorphological threshold, with important consequences during flood events. Consequently, since 2008, channel dynamics have turned into sedimentâladen, highly destructive torrential flows. In order to assess this phenomenon and to acquire a holistic understanding of the catchment's behaviour, we carried out a field workâbased multidisciplinary study. We considered the interaction of the various controlling factors, including bedrock geology, geomorphological evolution, derived soils and coluvial deposits, rainfall patterns, and the hydrological response of the catchment to flood events. Moreover, anthropogenic landâuse changes, its consequential hydrogeomorphic effects and the role of vegetation were also taken into account. Robust sedimentological and geomorphological evidence of ancient dense debris flows show that the basin has shifted around this threshold, giving rise to two different behaviours or equilibrium conditions throughout its history: alternating periods of moderate, bedloadâladen flows and periods of high sedimentâladen debris flow dynamics. This shifting could have extended through the Holocene. Finally, we discuss the possible impact of climate and global change, as the projected effects suggest future soil and forest degradation; this, jointly with more intense rainfalls in these mountain environments, would exacerbate the future occurrence of dense sedimentâladen flows at PortainĂ©, but also in other nearby, similar basins
Pharmacokinetic Interactions of Clinical Interest Between Direct Oral Anticoagulants and Antiepileptic Drugs
Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and rivaroxaban are being increasingly prescribed among the general population, as they are considered to be associated to lower bleeding risk than classical anticoagulants, and do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above all among the elderly. As a result, potential interactions may cause an increased risk of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the present review is to describe the pharmacokinetic interactions between AEDs and DOACs of clinical relevance. We observed that there are only few clinical reports in which such interactions have been described in patients. More data are available on the pharmacokinetics of both drugs classes which allow speculating on their potential interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban, and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine, or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which do not affect significantly CYP activity in vitro, might have a quite safe profile, even though their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few case reports and limited evidence on interactions between DOACs and AEDs in patients. However, the overall evidence suggests that the interaction between these drug classes might be of high clinical relevance and therefore further studies in larger patients' cohorts are warranted for the future in order to better clarify their pharmacokinetic and define the most appropriate clinical behavior
- âŠ