7 research outputs found

    An overlooked hepcidin-cadmium connection

    Get PDF
    Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the �-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 10^10.1 M^-1 for Zn(II) ions; Cd(II) ions bind with affinities of 10^15.2 M^-1 and 10^14.1 M^-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions

    Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans

    No full text
    Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin® (Tavaborole) and Eucrisa® (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole’s derivatives, have been synthetized and characterized in terms of their activity against Candida albicans as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds. The determined zones of the growth inhibition of examined microorganism indicate high diffusion of majority of the studied compounds within the applied media as well as their reasonable activity. The Minimum Inhibitory Concentration (MIC) values show that the introduction of an amine substituent in position “3” of the benzoxaborole heterocyclic ring results in a considerable drop in activity in comparison with Tavaborole (AN2690) as well as unsubstituted benzoxaborole (AN2679). In all studied cases the presence of a fluorine substituent at position para to the boron atom results in lower MIC values (higher activity). Interestingly, introduction of a fluorine substituent in the more distant piperazine phenyl ring does not influence MIC values. As determined by X-ray studies, introduction of a formyl group in proximity of the boron atom results in a considerable change of the boronic group geometry. The presence of a formyl group next to the benzoxaborole unit is also detrimental for activity against Candida albicans
    corecore