8 research outputs found

    Role of Intracellular Drug Disposition in the Response of Acute Myeloid Leukemia to Cytarabine and Idarubicin Induction Chemotherapy

    No full text
    Despite its often low efficacy and high toxicity, the standard treatment for acute myeloid leukemia (AML) is induction chemotherapy with cytarabine and idarubicin. Here, we have investigated the role of transporters and drug-metabolizing enzymes in this poor outcome. The expression levels (RT-qPCR) of potentially responsible genes in blasts collected at diagnosis were related to the subsequent response to two-cycle induction chemotherapy. The high expression of uptake carriers (ENT2), export ATP-binding cassette (ABC) pumps (MDR1), and enzymes (DCK, 5-NT, and CDA) in the blasts was associated with a lower response. Moreover, the sensitivity to cytarabine in AML cell lines was associated with ENT2 expression, whereas the expression of ABC pumps and enzymes was reduced. No ability of any AML cell line to export idarubicin through the ABC pumps, MDR1 and MRP, was found. The exposure of AML cells to cytarabine or idarubicin upregulated the detoxifying enzymes (5-NT and DCK). In AML patients, 5-NT and DCK expression was associated with the lack of response to induction chemotherapy (high sensitivity and specificity). In conclusion, in the blasts of AML patients, the reduction of the intracellular concentration of the active metabolite of cytarabine, mainly due to the increased expression of inactivating enzymes, can determine the response to induction chemotherapy

    A Novel Serum Metabolomic Profile for the Differential Diagnosis of Distal Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma

    Get PDF
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required.This study was supported by the Centro Internacional sobre el Envejecimiento, Spain (OLD-HEPAMARKER, 0348_CIE_6_E) co-financed with European Union ERDF funds; Carlos III Institute of Health, Spain (PI16/00598, PI16/01126, PI18/01075, PI19/00819) and Miguel Servet Program (CON14/00129) co-financed by European Regional Development Fund; Asociación Española Contra el Cancer, Spain (AECC-Cánceres raros 2017/2020); H2020 ESCALON project: H2020-SC1-BHC-2018-2020; Fundacion La Caixa (Hepacare Project); MCIU/AEI/FEDER, EU (SAF2017-87301-R); Severo Ochoa Excellence Accreditation (SEV-2016-0644). A. Sanchez-Martin and A. Lapitz were supported by pre-doctoral scholarships funded by the Ministry of Science, Innovation and Universities (FPU17/04027) and the Basque Government (PRE_2017_1_0345), respectively, and M.L. Gutiérrez is supported by the "Stop fuga de Cerebros" grant from ROCHE FARMA SA. This work was carried out in the framework of Working Group 5 of the COST Action CA18122, European Cholangiocarcinoma Network, EURO-CHOLANGIO-NET

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    A novel serum metabolomic profile for the differential diagnosis of distal cholangiocarcinoma and pancreatic ductal adenocarcinoma

    No full text
    The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required

    Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma and primary sclerosing cholangitis

    No full text
    Early and differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) by noninvasive methods represents a current clinical challenge. The analysis of low-molecular-weight metabolites by new high-throughput techniques is a strategy for identifying biomarkers. Here, we have investigated whether serum metabolome can provide useful biomarkers in the diagnosis of iCCA and HCC and could discriminate iCCA from HCC. Because primary sclerosing cholangitis (PSC) is a risk factor for CCA, serum metabolic profiles of PSC and CCA have also been compared. The analysis of the levels of lipids and amino acids in the serum of patients with iCCA, HCC, and PSC and healthy individuals (n = 20/group) showed differential profiles. Several metabolites presented high diagnostic value for iCCA versus control, HCC versus control, and PSC versus control, with areas under the receiver operating characteristic curve (AUC) greater than those found in serum for the nonspecific tumor markers carbohydrate antigen 19-9 (CA 19-9) and alpha-fetoprotein (AFP), commonly used to help in the diagnosis of iCCA and HCC, respectively. The development of an algorithm combining glycine, aspartic acid, SM(42:3), and SM(43:2) permitted to accurately differentiate in the diagnosis of both types of tumors (biopsy-proven). The proposed model yielded 0.890 AUC, 75% sensitivity, and 90% specificity. Another algorithm by combination of PC(34:3) and histidine accurately permitted to differentiate PSC from iCCA, with an AUC of 0.990, 100% sensitivity, and 70% specificity. These results were validated in independent cohorts of 14-15 patients per group and compared with profiles found in patients with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Conclusion: Specific changes in serum concentrations of certain metabolites are useful to differentiate iCCA from HCC or PSC, and could help in the early diagnosis of these diseases

    Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma and primary sclerosing cholangitis

    Get PDF
    Early and differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) by noninvasive methods represents a current clinical challenge. The analysis of low-molecular-weight metabolites by new high-throughput techniques is a strategy for identifying biomarkers. Here, we have investigated whether serum metabolome can provide useful biomarkers in the diagnosis of iCCA and HCC and could discriminate iCCA from HCC. Because primary sclerosing cholangitis (PSC) is a risk factor for CCA, serum metabolic profiles of PSC and CCA have also been compared. The analysis of the levels of lipids and amino acids in the serum of patients with iCCA, HCC, and PSC and healthy individuals (n = 20/group) showed differential profiles. Several metabolites presented high diagnostic value for iCCA versus control, HCC versus control, and PSC versus control, with areas under the receiver operating characteristic curve (AUC) greater than those found in serum for the nonspecific tumor markers carbohydrate antigen 19-9 (CA 19-9) and alpha-fetoprotein (AFP), commonly used to help in the diagnosis of iCCA and HCC, respectively. The development of an algorithm combining glycine, aspartic acid, SM(42:3), and SM(43:2) permitted to accurately differentiate in the diagnosis of both types of tumors (biopsy-proven). The proposed model yielded 0.890 AUC, 75% sensitivity, and 90% specificity. Another algorithm by combination of PC(34:3) and histidine accurately permitted to differentiate PSC from iCCA, with an AUC of 0.990, 100% sensitivity, and 70% specificity. These results were validated in independent cohorts of 14-15 patients per group and compared with profiles found in patients with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Conclusion: Specific changes in serum concentrations of certain metabolites are useful to differentiate iCCA from HCC or PSC, and could help in the early diagnosis of these diseases
    corecore