16 research outputs found

    Seismic structure and composition of the southern central Iberian crust: The ALCUDIA wide angle seismic reflection transect

    Get PDF
    The authors thank the Associated Editor and the anonymous reviewers for their thoroughly valuable suggestions and comments that improved the manuscript. Seismic data were collected in 2012 with funding provided by the Spanish Ministry of Science and Innovation (grants: CGL2004-04623/BTE, CGL2007-63101/BTE, CGL2011-24101, CSD2006-00041). Instrumentation was provided by the IRIS-PASSCAL instrument center, Socorro, New Mexico, USA. The seismic data, including experiment geometry are stored in the IRIS-PASSCAL facilities and can be accessed through the IRIS-PASSCAL data management center. I.P. is funded by the Spanish Government and the Universidad de Salamanca with a Beatriz Galindo grant (BEGAL 18/00090). S.A. Ehsan is funded by the European Commission grant Marie Curie Actions (264517-TOPOMOD-FP7-PEOPLE-2010-ITN). We thank Instituto Geologico y Minero de Espana for providing the logistic help and an academic crew for data acquisition. GMT was used to prepare some of the figures shown in the paper.The nature of the crust beneath central Iberia was estimated by a wide-angle seismic reflection/refraction transect, ALCUDIA-WA, which sampled the southern half of the Variscan Central Iberian Zone, covered in the north by the Cenozoic Tajo Basin. The shot gathers recorded by vertical component sensors revealed well defined P- and S-wave phases. These arrivals were modeled by an iterative forward approach providing 2D crustal models showing variations in the velocity distribution with upper crustal P- and S-wave velocities increasing northwards. The lower crust P-wave velocities are homogeneous along the profile while the S-wave velocities slightly increase northwards. The Moho is placed at 32 km depth in the southern edge of the profile, deepening northward down to 35 km beneath the Tajo Basin. The Poisson's ratio, calculated from P- and S-wave velocities, varies along the profile at upper crustal depths. The highest values are located below the Mora and Pedroches batholiths. These resulting physical properties can serve to constrain the crustal composition by comparing them with laboratory measurements on rock samples. Our results suggest that the upper crust in the southern and central segments of the ALCUDIA profile is made up of low-grade metasedimentary rocks, while the northern segment is dominated by igneous rocks, in agreement with the surface geology. Separated by a sharp boundary located between 12 km (south) and 18 km (north) depth, the lower crust is more homogeneous and shows low Poisson’ ratios compatible with a rather felsic composition. However, outstanding lamination described in coincident vertical incidence data indicates some degree of intercalation with mafic components.Spanish Government CGL2004-04623/BTE CGL2007-63101/BTE CGL2011-24101 CSD2006-00041Spanish GovernmentEuropean Commission BEGAL 18/00090Universidad de Salamanca BEGAL 18/00090European Commission grant Marie Curie Actions 264517-TOPOMOD-FP7-PEOPLE-2010-IT

    Systematics of detrital zircon U–Pb ages from Cambrian–Lower Devonian rocks of northern Morocco with implications for the northern Gondwanan passive margin

    Get PDF
    This study was found by the Ministerio de Economia y Competitividad (MINECO) of Spain through the project PANGEATOR (CGL2015-71692) and the Pre-Doctoral scholarship BES-2016-078168. We are indebted to Mike Hall and Brad McDonald for their assistance and technical support on sample preparation and the LA-ICPMS, respectively. The CL imaging was carried out on the Curtin University's Microscopy & Microanalysis Facility, whose instrumentation has been partially funded by the University, State and Commonwealth Governments, and the Scanning Electron Microscope (SEM) Facility at the University of Edinburgh. Analysis in the SHRIMP and GeoHistory Facilities, JdLC, Curtin University were enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS) and an Australian Geophysical Observing System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment Fund program, respectively. The NPII multi-collector was obtained via funding from the Australian Research Council LIEF program (LE150100013). The SIMS analyses were performed at the NERC Ion Microprobe Facility of the University of Edinburgh (UK). Comments from two anonymous reviewers and editorial handling by Prof. Victoria Pease are acknowledged. Funding for open access charge: YUniversidad de Granada / CBUA.The systematic acquisition of U–Pb geochronological data from detrital zircon grains has become an essential tool in tectonic studies focused on reconstructing the pre–Variscan geography of the northern Gondwanan passive margin. New detrital zircon ages for 16 samples from the Cambrian–Lower Devonian succession of the Moroccan Mesetas (northern Morocco) are reported here. The results, combined with previously published data, reassert the strong West African Craton affinity of the Paleozoic sedimentary rocks, characterized by dominant Cadomian/Pan–African (c. 850–540 Ma) and Eburnean (c. 2.2–1.9 Ga) detrital zircon populations and a minor Leonian/Liberian (c. 2.5 Ga) population. Primary sources of these zircon grains are well established as the West African Craton located just to the south, but also in the Precambrian basement that locally crops out in the Moroccan Mesetas themselves. During the Cambrian–Early Ordovician, erosion preferentially dismantled Cadomian (c. 590–540 Ma) arc–derived rocks of the Gondwanan continental margin, while later, the slightly older Pan–African (c. 650–600 Ma) basement became the main sediment source. In the studied samples, irregularly present minor detrital zircon populations suggest additional sediment provenance from secondary sources such as: (i) remote northeastern African cratons (e.g., Saharan Metacraton and/or Arabian–Nubian Shield) that likely could have provided the c. 1.1–0.9 Ga and, possibly, the c. 1.9–1.7 Ga zircon grains, and (ii) rift–related Cambrian–Early Ordovician volcanic centers in the Moroccan Mesetas that supplied heterogeneously distributed – although locally dominant in small areas – sedimentary detritus before rift abortion and burial underneath the overlying passive margin sedimentary succession.Ministerio de Economia y Competitividad (MINECO) of Spain through the project PANGEATOR CGL2015-71692Scanning Electron Microscope (SEM) Facility at the University of EdinburghAustralian Geophysical Observing System grant by AQ44 Australian Education Investment Fund programAustralian Research Council LE150100013Universidad de Granada / CBUA BES-2016-07816

    Crustal Imbrication in an Alpine Intraplate Mountain Range: A Wide-Angle Cross-Section Across the Spanish-Portuguese Central System

    Get PDF
    Intraplate ranges are topographic features that can occur far from plate boundaries, the expected position of orogens as described in the plate tectonics theory. To understand the lithospheric structure of intraplate ranges, we focused on the Spanish-Portuguese Central System (SPCS), the most outstanding topographic feature in the central Iberian Peninsula. The SPCS is an Alpine range that exhumes Precambrian-Paleozoic rocks and is located at >200 km from the northern border of the Iberian microplate. Here, we provide a P-wave velocity model based on wide-angle seismic reflection/refraction data of the central SPCS (Gredos sector). Our results show: (a) a layered lithosphere characterized by three major interfaces: Conrad, Mohorovicic, and Hales discontinuities, (b) an asymmetry of the crust-mantle boundary under the SPCS, (c) the extent of the Variscan batholith forming the main outcrops of Gredos, and (d) the thinning of the lower crust toward the south. This model suggests that the exhumation of the SPCS basement was driven by a south-vergent thick-skinned thrust system, developed in the southern part of the SPCS and that promoted crustal imbrication and a Mohorovicic discontinuity's offset under the SPCS. Thus, the deformation mechanisms of the crust seem to be controlled by the presence of the late- to post-Variscan granitoids that assimilated the Variscan mid-crustal detachment creating a new rheological boundary. This tectonic structure allowed the formation of Alpine crustal-scale thrust systems that eased coupled deformation of the upper and lower crust, leading to limited underthrusting of both crustal layers.This study has been funded by the Ministry of Science, Innovation and Competitiveness through the Project CIMDEF (CGL2014-56548-P). IP is funded by the Spanish Government and the University of Salamanca (Beatriz Galindo grant BEGAL 18/00090). JA is funded by grant IJC2018-036074-I, funded by MCIN/AEI/10.13039/501100011033. DMP and FGL are also funded by grants CGL2015-71692 (MINECO/ FEDER) and PID2020-118822GB-I00 (MCIN/AEI/10.13039/501100011033).Peer reviewe

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.EEA Santa CruzFil: Poyatos, Rafael. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Poyatos, Rafael. CREAF. Bellaterra (Cerdanyola del Vallès); EspañaFil: Granda, Víctor. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Granda, Víctor. Joint Research Unit CREAF-CTFC. Bellaterra; EspañaFil: Flo, Víctor. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Adams, Mark A. Swinburne University of Technology. Faculty of Science Engineering and Technology; Australia.Fil: Adams, Mark A. University of Sydney. School of Life and Environmental Sciences; Australia.Fil: Adorján, Balázs. University of Debrecen. Faculty of Science and Technology. Department of Botany; HungríaFil: Aguadé, David. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Aidar, Marcos P. M. Institute of Botany. Plant Physiology and Biochemistry; BrasilFil: Allen, Scott. University of Nevada. Department of Natural Resources and Environmental Science; Estados UnidosFil: Alvarado-Barrientos, M. Susana. Instituto de Ecología A.C. Red Ecología Funcional; México.Fil: Anderson-Teixeira, Kristina J. Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute; PanamáFil: Anderson-Teixeira, Kristina J. Conservation Ecology Center. Smithsonian Conservation Biology Institute; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Martínez-Vilalta, Jordi. CREAF. Bellaterra (Cerdanyola del Vallès); EspañaFil: Martínez-Vilalta, Jordi. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); Españ

    Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.This work was funded by research grants from Instituto de Salud Carlos III, including funds from FEDER, to M.P.-A. and B.L. (PI17/00352) and HR17-00268 (TATAMI project) from the “la Caixa” Banking Foundation to R.A. I.G.-M. was funded by the Precipita Project titled “Desarrollo de una terapia innovadora contra la distrofia miotónica,” E.C.-H. and J.M.F.-C. were supported by the post-doctoral fellowships APOSTD/2019/142 and APOSTD/2017/088 from the Fondo Social Europeo for science and investigation, while J.E.-E. was the recipient of a Santiago Grisolia fellowship (Grisolip2018/098) from the Generalidad Valenciana. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020). Antibody MB1a (4A8) was provided by MDA Monoclonal Antibody Resource

    Deep seismic exploration of the Iberian Microplate

    Get PDF
    [EN]This presentation was a key-note lecture at the International Symposium on Deep Exploration and Practices. It describes the acquisition of controlled source seismic data in the Iberian Peninsula during the last decade

    Caracterización de la estructura cortical bajo la Zona Centro Ibérica: el experimento CIMDEF

    Get PDF
    X Congreso Geológico de España, 5-7 Julio 2021, Vitoria - GasteizEl Macizo Ibérico, en la parte occidental de la Península Ibérica, constituye una sección prácticamente completa del orogéno Varisco. Desde los años 90 este macizo ha sido objeto de diferentes estudios geofísicos para conocer la estructura a escala cortical. No obstante, en su parte central ¿ la Zona Centro Ibérica ¿ todavía no existían datos de sísmica profunda. Con el fin de aportar información geofísica en esta zona, en 2017 y 2019 se llevó a cabo el experimento de sísmica de reflexión y refracción de gran ángulo, CIMDEF (Central Iberian Mechanism of DEFormation). Este proyecto consiste en tres perfiles de orientación NNO-SSE y E-O de entre 130 y 330 km de longitud que atraviesan la cuenca del Duero, el Sistema Central y la cuenca del Tajo, lo que nos ha permitido construir un nuevo modelo de velocidades de ondas P en este sector de la Zona Centro Ibérica. Los resultados complementarán los modelos previos basados en interferometría sísmica de fases globales y sísmica de ruido ambiente (Andrés et al., 2019, 2020), aportando nuevos datos para validar la precisión de métodos sísmicos pasivos a escala litosférica en el orógeno Varisco.The Iberian Massif, in the western part of the Iberian Peninsula, constitutes a nearly complete section of the Variscan orogen. Since the 1990s it has been target of different geophysical studies to unravel the crustal structure. However, there was a remarkable lack of deep seismic sounding data in its central part – the Central Iberian Zone. To fill this gap, a wide-angle seismic reflection and refraction experiment, CIMDEF (Central Iberian Mechanism of DEFormation), was acquired in 2017 and 2019. CIMDEF consists of three NNW-SSE and E-W oriented profiles ranging between 130 and 330 km in length. These profiles run through the Duero basin, the Central System and the Tajo basin, allowing us to construct a new P-wave velocity model in this sector of the Central Iberian Zone. Furthermore, it will help to complement previous models in this area based on Global-Phase Seismic Interferometry and ambient seismic noise (Andrés et al., 2019, 2020), thus providing new constraints to validate the accuracy of passive seismic methods at lithospheric scale in the Variscan orogen.EU EIT-RawMaterials 17024_20170331_92304; MINECO: CGL2016-81964-REDE, CGL2014-56548-P)

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    A comparison of the Neoproterozoic / Lower Palaeozoic lithostratigraphy of Morocco and southwestern Iberia. Geodynamic interpretations

    No full text
    El Neoproterozoico del sudoeste de Iberia (Serie Negra y Formación Malcocinado) es contemporáneo de un magmatismo calcoalcalino (Precámbrico PIII del Anti-Atlas de Marruecos) que sella la Orogenia Cadomiense. El Cámbrico inferior y medio está representado, tanto en Iberia como en Marruecos, por secuencias detríticas y vulcanosedimentarias formadas en un contexto de rifting. Sin embargo, la evolución de estas dos regiones se diferenció a partir del Cámbrico superior: en el sudoeste de Iberia, la actividad extensional continuó durante el Ordovícico, desarrollándose dominios oceánicos; en Marruecos, dominó durante el resto del Paleozoico inferior un régimen de plataforma débilmente extensional
    corecore