159 research outputs found

    Two functional variants of IRF5 influence the development of macular edema in patients with non-anterior uveitis.

    Get PDF
    Objective Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. Methods Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. Results A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (PFDR=5.07E-03, OR=1.48, CI 95%=1.14-1.92 and PFDR=3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. Conclusion Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies

    HLA genetic study in Iran Saqqez-Baneh Kurds: no genetic trace of Aryan invasions in Anatolian Turks and Kurds is found

    Get PDF
    Kurds are living at Middle East region comprising several countries (38 million people) and also have emigrated to Asia, Europe and America. Kurds from Iran have been HLA typed in the present work from Saqqez and Baneh towns, Kordestan province, Iran. Origin of Kurds is considered autochthonous from Anatolia and surrounding mountains :they have been referred as “the mountain people” by classic Persian, Greek and Roman authors. Present day Turks are also autochthonous from Anatolia, but they were not recognized by classical authors as living in the mountains and they speak a language of Asian origin that was imposed to Anatolia by a “elite” invasion without a noticeable high Asian gene input. Most frequent class I and class II HLA alleles found in Iranian Kurds population are: HLA‐A*24:02, A*02:01 and HLA‐B*35:01, and HLA‐DRB1*11:01, DRB1*03:02 and HLA‐DQB1*03:01; also, most frequent HLA extended haplotypes from this Iran Kurdish sample are not shared with Iranians but with Mediterranean, Turkish and Caucasus people. This is confirmed by Neighbour‐Joining and correspondence analysis studied together with the corresponding populations. Finally, our studies show that both Kurds and Turks are genetically original from Anatolian Peninsula and surrounding countries and that an apparent Asian genetic or Aryan invasion does not exist in the area

    Cannabinoid receptor CB2 drives HER2 pro-oncogenic signaling in breast cancer

    Get PDF
    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different models of cancer. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen and Freiburg between 1997 and 2010. CB2 mRNA expression was also analyzed in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the HER2 rat ortholog (neu) and lacks CB2, and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by co-localization, coimmunoprecipitation and proximity ligation assays. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis. We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade, and that an increased CB2 expression activates the HER2 prooncogenic signaling machinery at the level of the tyrosine kinase c-SRC. Finally, HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and suggest that CB2 may be a biomarker with prognostic value in these tumors

    Patrimonio académico como herramienta para el desarrollo de futuras carreras científicas

    Get PDF
    Desde hace tiempo la Unión Europea busca y fomenta la cooperación entre la Universidad y los Institutos de Educación Secundaria para el desarrollo de futuras carreras científicas. Después de varios proyectos de investigación competitivos desarrollados por separado, hemos encontrado importantes confluencias entre el patrimonio custodiado por la Universidad Complutense y el IES San Isidro; ambas instituciones cuentan con una larga historia y atesoran un patrimonio científico, artístico y educativo de gran interés que es necesario conectar y poner en valor. La universidad ha desarrollado varios programas de cooperación en varios niveles y muchas de ellos planteaban mostrar y experimentar con el fin de descubrir, propuesta en la que queremos ahondar y avanzar a través del patrimonio educativo

    Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ

    Get PDF
    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.This work was supported by grants from Plan Nacional de Investigación BFU 2011-23416 (J.M.A.), BFU2099-09552 (P.C.), and SAF2010-22198 (M.L.L.-R.), grant CM S2010/BMD-2353 (M.L.L.-R, P.C., J.M.A.), and fellowships FPI (L.B.R.-A.), FPU (M.A.) and CSIC-JAE (E.R.-A.)

    New insights into the genetic component of non-infectious uveitis through an Immunochip strategy

    Get PDF
    Background: Large-scale genetic studies have reported several loci associated with specific disorders involving uveitis. Our aim was to identify genetic risk factors that might predispose to uveitis per se, independent of the clinical diagnosis, by performing a dense genotyping of immune-related loci. Methods: 613 cases and 3693 unaffected controls from three European case/control sets were genotyped using the Immunochip array. Only patients with non-infectious non-anterior uveitis and without systemic features were selected. To perform a more comprehensive analysis of the human leucocyte antigen (HLA) region, SNPs, classical alleles and polymorphic amino acid variants were obtained via imputation. A meta-analysis combining the three case/control sets was conducted by the inverse variance method. Results: The highest peak belonged to the HLA region. A more detailed analysis of this signal evidenced a strong association between the classical allele HLA-A*2902 and birdshot chorioretinopathy (p=3.21E-35, OR=50.95). An omnibus test yielded HLA-A 62 and 63 as relevant amino acid positions for this disease. In patients with intermediate and posterior uveitis, the strongest associations belonged to the rs7197 polymorphism, within HLA-DRA (p=2.07E-11, OR=1.99), and the HLA-DR15 haplotype (DRB1*1501: p=1.16E-10, OR=2.08; DQA1*0102: p=4.37E-09, OR=1.77; DQB1*0602: p=7.26E-10, OR=2.02). Outside the HLA region, the MAP4K4/IL1R2 locus reached statistical significance (rs7608679: p=8.38E-07, OR=1.42). Suggestive associations were found at five other loci. Conclusions: We have further interrogated the association between the HLA region and non-infectious non-anterior uveitis. In addition, we have identified a new non-HLA susceptibility factor and proposed additional risk loci with putative roles in this complex condition

    Class II HLA in Georgia Caucasus Tbilisi Georgians and their Mediterranean ancestry: The Usko Mediterranean languages

    Get PDF
    Georgia (or Sakartvelo in its own language) is a South Caucasus Mts. country with its easternmost part is enigmatically named Iberia, like the Iberian Peninsula, which may refer to rivers “Kura” and “Ebro” or their valleys respectively. Most of their inhabitants speak Georgian which is included within Dene-Caucasian group and Usko-Mediterranean subgroup of languages. The latter includes Basque, Berber, ancient Iberian-Tartessian, Etruscan, Hittite, Minoan Lineal A and others. In the present paper, HLA class II -DRB1 and -DQB1 alleles has been studied and extended haplotypes calculated. Most frequent haplotypes are also of Mediterranean origin (i. e.: (A*02-B*51)-DRB1*11:01-DQB1*03:01, (A*02-B*51)-DRB1*13:01-DQB1*06:03, or (A*24-B*35)-DRB1*01:01-DQB1*05:01) and DA genetic distances show that closest world populations to Georgians are Mediterraneans. Georgians also show common extended haplotypes ((A*02-B*51)-DRB1*11:01-DQB1*03:01, (A*02-B*13)-DRB1*07:01-DQB1*02:01 and (A*03-B*35)-DRB1*11:01-DQB1*03:01) with Svan people, a secluded population in North Georgia mountains. We can conclude that Georgians belong to a very old Mediterranean substratum according to both linguistics (Usko Mediterranean languages) and HLA genetics

    Targeting bacterial cell division protein FtsZ with small molecules and fluorescent probes

    Get PDF
    Trabajo presentado en el 248th National Meeting of the American-Chemical-Society (ACS), celebrado en San Francisco, CA (Estados Unidos), del 10 al 14 de agosto de 201

    New Polyether Triterpenoids from Laurencia viridis and Their Biological Evaluation

    Get PDF
    The red seaweed Laurencia viridis is a rich source of secondary metabolites derived from squalene. New polyethers, such as iubol (2), 22-hydroxy-15(28)- dehydrovenustatriol (3), 1,2-dehydropseudodehydrothyrsiferol (4), and secodehydrothyrsiferol (5) have been isolated and characterized from this alga. The structures were determined through the interpretation of NMR spectroscopic data and the relative configuration was proposed on the basis of NOESY spectrum and biogenetic considerations. All new compounds exhibited significant cytotoxic activity against a panel of cancer cell lines

    The structural assembly switch of cell division protein FtsZ probed with fluorescent allosteric inhibitors

    Get PDF
    FtsZ is a widely conserved tubulin-like GTPase that directs bacterial cell division and a new target for antibiotic discovery. This protein assembly machine cooperatively polymerizes forming single-stranded filaments, by means of self-switching between inactive and actively associating monomer conformations. The structural switch mechanism was proposed to involve a movement of the C-terminal and N-terminal FtsZ domains, opening a cleft between them, allosterically coupled to the formation of a tight association interface between consecutive subunits along the filament. The effective antibacterial benzamide PC190723 binds into the open interdomain cleft and stabilizes FtsZ filaments, thus impairing correct formation of the FtsZ ring for cell division. We have designed fluorescent analogs of PC190723 to probe the FtsZ structural assembly switch. Among them, nitrobenzoxadiazole probes specifically bind to assembled FtsZ rather than to monomers. Probes with several spacer lengths between the fluorophore and benzamide moieties suggest a binding site extension along the interdomain cleft. These probes label FtsZ rings of live Bacillus subtilis and Staphylococcus aureus, without apparently modifying normal cell morphology and growth, but at high concentrations they induce impaired bacterial division phenotypes typical of benzamide antibacterials. During the FtsZ assembly-disassembly process, the fluorescence anisotropy of the probes changes upon binding and dissociating from FtsZ, thus reporting open and closed FtsZ interdomain clefts. Our results demonstrate the structural mechanism of the FtsZ assembly switch, and suggest that the probes bind into the open clefts in cellular FtsZ polymers preferably to unassembled FtsZ in the bacterial cytosol
    corecore