52 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET ITER-like wall divertor

    No full text
    The work presented draws on new analysis of components removed following the second JET ITER-like wall campaign 2013–14 concentrating on the upper inner divertor, inner and outer divertor corners, lifetime issues relating to tungsten coatings on JET carbon fibre composite divertor tiles and dust/particulate generation. The results show that the upper inner divertor remains the region of highest deposition in the JET-ILW. Variations in plasma configurations between the first and second campaign have altered material migration to the corners of the inner and outer divertor. Net deposition is shown to be beneficial in the sense that it reduces W coating erosion, covers small areas of exposed carbon surfaces and even encapsulates particles

    Neutronics experiments and analyses in preparation of DT operations at JET

    No full text
    In the frame of the WPJET3-DT Technology project within the EUROfusion Consortium program, neutronics experiments are in preparation for the future deuterium-tritium campaign on JET (DTE2). The experiments will be conducted with the purpose to validate the neutronics codes and tools used in ITER, thus reducing the related uncertainties and the associated risks in the machine operation. This paper summarizes the status of previous shutdown dose rate benchmarks experiments and analyses performed at JET and focuses on the computational and experimental efforts conducted in preparation of the future DTE2 experiments. In particular, preliminary calculations and studies to select detectors and positions aimed to reduce uncertainties in the shutdown dose rate experiment are presented and discussed

    Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors

    No full text
    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection

    The upgraded JET toroidal Alfvén eigenmode diagnostic system

    No full text
    The main characteristics of toroidal Alfven eigenmodes (TAEs) have been successfully investigated in JET (Joint European Torus) using the scheme of sweeping-frequency external excitation with tracking of the synchronously-detected resonances. However, due to technical limitations, only modes with low values of the toroidal mode number n ≤7 could be effectively excited and unambiguously identified by the Alfven Eigenmode Active Diagnostic (AEAD) system. This represents a serious restriction because theoretical models indicate that medium-n Alfven eigenmodes (AEs) are the most prone to be destabilized by energetic particles in ignited plasmas and, therefore, reliable measurement of their damping rates remains a relevant issue to properly access their effect in ignited plasmas. For this reason, a major upgrade of the AEAD system has been carried out aiming at providing a state-of-the-art excitation and real-time detection system for the planned DT campaign in JET. This required the development of a new type of radio frequency amplifier and filter, not commercially available, and also a control system. In this paper, details of the concepts that are relevant to understand the operation of the new system in the next experimental campaigns are presented, as are the results of numerical simulations to model its performance

    Neutronic analysis of JET external neutron monitor response

    No full text
    The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated 252Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak

    Core-SOL Modelling of Neon Seeded JET Discharges with the ITER-like Wall

    No full text
    Five ELMy H-mode Ne seeded JET pulses have been simulated with the self-consistent core-SOL model COREDIV. In this five pulse series only the Ne seeding rate was changed shot by shot, allowing a thorough study of the effect of Ne seeding on the total radiated power and of its distribution between core and SOL tobe made. The increase in the simulations of the Ne seeding rate level above that achieved in experiments shows saturation of the total radiated power at a relatively low radiated-heating power ratio (frad = 0.60) and a further increase of the ratio of SOL to core radiation, in agreement with the reduction of W release at high Ne seeding level. In spite of the uncertainties caused by the simplified SOL model of COREDIV (neutral model, absence of ELMs and slab model for the SOL), the increase of the perpendicular transport in the SOL with increasing Ne seeding rate, which allows to reproduce numerically the experimental distribution core-SOL of the radiated power, appears to be of general applicability

    Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    No full text
    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks

    Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and e × B stabilization in JET high-performance discharges

    No full text
    Nonlinear gyrokinetic simulations using the GENE code have previously predicted a significant nonlinear enhanced electromagnetic stabilization in certain JET discharges with high neutral-beam power and low core magnetic shear (Citrin et al 2013 Phys. Rev. Lett. 111 155001, 2015 Plasma Phys. Control. Fusion 57 014032). This dominates over the impact of E × B flow shear in these discharges. Furthermore, fast ions were shown to be a major contributor to the electromagnetic stabilization. These conclusions were based on results from the GENE gyrokinetic turbulence code. In this work we verify these results using the GYRO code. Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree for more than one discharge. Otherwise, agreement may simply be fortuitous. Therefore, we analyze three discharges, all with a carbon wall: a simplified, two-species, circular geometry case based on an actual JET discharge; an L-mode discharge with a significant fast-ion pressure fraction; and a low-triangularity high-β hybrid discharge. All discharges were analyzed at normalized toroidal flux coordinate ρ = 0.33 where significant ion temperature peaking is observed. The GYRO simulations support the conclusion that electromagnetic stabilization is strong, and dominates E × B shear stabilization

    JET experiments with tritium and deuterium–tritium mixtures

    No full text
    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at 14 MeV of JET neutron diagnostics
    corecore