46 research outputs found
Seismogram synthesis for teleseismic events with application to source and structural studies
The aim of this thesis is to develop procedures for the modelling and inversion of teleseismic P and S waveforms which are as flexible as possible. This flexibility is necessary in order to obtain accurate source depth and mechanism estimates for small to moderate size events, such as those that are relevant in the context of monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT). ¶ The main challenge for extending source depth and mechanism inversion methods to smaller events is to ensure that sufficiently accurate synthetic seismograms are available for comparison with observed records. An accurate phase-adaptive reflectivity method has therefore been developed, against which the performance of less computationally intensive approximations can be judged. The standard reflectivity method has been modified to allow for different crustal and upper mantle structures at the source and receiver, and the full effects of reverberations and conversions in these structures can be allowed for. Core reflections and refractions can also be included; these phases can become important at certain distance ranges. A slowness bundle approach has been developed, where a restricted slowness integration about the geometric slowness for the direct wave is undertaken at each frequency, allowing accurate results to be obtained whilst avoiding the expense of a full reflectivity technique. ¶ ..
A multiphase seismic investigation of the shallow subduction zone, southern North Island, New Zealand
The shallow structure of the Hikurangi margin, in particular the interface between the Australian Plate and the subducting Pacific Plate, is investigated using the traveltimes of direct and converted seismic phases from local earthquakes. Mode conversions take place as upgoing energy from earthquakes in the subducted slab crosses the plate interface. These PS and SP converted arrivals are observed as intermediate phases between the direct P and S waves. They place an additional constraint on the depth of
the interface and enable the topography of the subducted plate to be mapped across the region. 301 suitable earthquakes were recorded by the Leeds (Tararua) broad-band seismic array, a temporary line of three-component short-period stations, and the permanent stations of the New Zealand national network. This provided coverage across the land area of southern North Island, New Zealand, at a total of 17 stations. Rays are traced
through a structure parametrized using layered B-splines and the traveltime residuals inverted, simultaneously, for hypocentre relocation, interface depth and seismic velocity. The results are consistent with sediment in the northeast of the study region and gentle topography on the subducting plate. This study and recent tectonic reconstructions of the southwest Pacific suggest that the subducting plate consists of captured, oceanic
crust. The anomalous nature of this crust partly accounts for the unusual features of the Hikurangi margin, e.g. the shallow trench, in comparison with the subducting margin
further north
Upper mantle anisotropy beneath the Geoscope stations
International audienceSeismic anisotropy has been widely studied this last decade, particularly by measuring splitting of vertically propagating core shear waves. The main interest in this technique is to characterize upper mantle flow beneath seismic stations. On the other hand, the major restriction in this method is that a single station gives a single anisotropy measurement. Alternative methods have been developed in order to avoid this restriction. An accurate determination of upper mantle seismic anisotropy beneath a seismic station may allow one, by doing anisotropy correction, to characterize remote or deeper anisotropy. The Geoscope network is ideal for this purpose because it is composed of a large set (about 26) of high-quality, broadband seismometers globally distributed and because some of these stations have run for more than 10 years and most of them for more than 5 years. We selected about 100 events at each site, generally of magnitude (m b) > 6.0, and we performed systematic measurements of the splitting parameters (fast polarization direction φ and delay time δt) on SKS, SKKS, and PKS phases. Splitting on oceanic islands has been difficult to observe owing to the low quality of the signal but also perhaps owing to complex upper mantle structures beneath the stations. Station KIP (Kipapa, Hawaii) in the Pacific is the only oceanic Geoscope station with a clear anisotropy. We determined well-constrained splitting parameters for 10 of the 17 continental stations that may be explained by a single anisotropic layer. The poor correlation between fast polarization directions and the absolute plate motion together with the apparent incoherence between the plate velocities and the observed delay times suggest that a simple drag-induced asthenospheric flow alone fails to explain most of the observations. For some stations located on or near major lithospheric structures (TAM, Tamanrasset, Algeria, for instance), we observe a good correlation between fast polarization directions and regional structures. At station SCZ (Santa Cruz, California), we found clear variations of the splitting parameters as a function of the event backazimuth, compatible with two layers of anisotropy. Three stations (CAN (Canberra), HYB (Hyderabad, India) and SSB (Saint Sauveur Badole, France)) seem to be devoid of detectable anisotropy
Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy
Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequency- dependent anisotropy analysis, it was found that the time delays in shear- waves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research
Flexible computation of teleseismic synthetics for source and structural studies
The modelling of P and S arrivals at teleseismic distances, for shallow sources, requires the consideration of the interaction of the direct arrivals and their surface reflections (pP, sP and pS, sS). A flexible computational scheme has been developed t
Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm
We performed nonlinear waveform inversion for source depth, time function, and mechanism, by modeling direct P and S waves and corresponding surface reflections at teleseismic distances. This technique was applied to moderate size events, and so we make use of short period or broadband records, and utilize SV waveforms in addition to P and SH. For the inversion we used a direct search method called the neighborhood algorithm (NA), which requires just two control parameters to guide the search in a conceptually simple manner, and is based on the rank of a user-defined misfit measure. We use a simple generalized ray scheme to calculate synthetic seismograms for comparison with observations, and show that the use of a derivative-free method such as the NA allows us to easily substitute more complex synthetics if necessary. The source mechanism is represented in two different ways; the superposition of a double-couple component with an isotropic component, and a general moment tensor with six independent components. Good results are obtained with both synthetic input data and real data. We achieve good depth resolution and obtain useful constraints on the source-time function and source mechanism, including an isotropic component estimate. Such estimates provide important discriminants between man-made events and earthquakes. We illustrate inversion with real data using two earthquakes, and in both cases the source parameter estimates compare well with the corresponding centroid moment tensor solutions. We also apply our technique to a known nuclear explosion and obtain a very shallow depth estimate and a large isotropic component