164 research outputs found

    Normalized Alignment of Dependency Trees for Detecting Textual Entailment

    Get PDF
    In this paper, we investigate the usefulness of normalized alignment of dependency trees for entailment prediction. Overall, our approach yields an accuracy of 60% on the RTE2 test set, which is a significant improvement over the baseline. Results vary substantially across the different subsets, with a peak performance on the summarization data. We conclude that normalized alignment is useful for detecting textual entailments, but a robust approach will probably need to include additional sources of information

    Quasiparticles dynamics in high-temperature superconductors far from equilibrium: an indication of pairing amplitude without phase coherence

    Full text link
    We perform time resolved photoelectron spectroscopy measurements of optimally doped \tn{Bi}_2\tn{Sr}_2\tn{CaCu}_2\tn{O}_{8+\delta} (Bi-2212) and \tn{Bi}_2\tn{Sr}_{2-x}\tn{La}_{x}\tn{Cu}\tn{O}_{6+\delta} (Bi-2201). The electrons dynamics show that inelastic scattering by nodal quasiparticles decreases when the temperature is lowered below the critical value of the superconducting phase transition. This drop of electronic dissipation is astonishingly robust and survives to photoexcitation densities much larger than the value sustained by long-range superconductivity. The unconventional behaviour of quasiparticle scattering is ascribed to superconducting correlations extending on a length scale comparable to the inelastic path. Our measurements indicate that strongly driven superconductors enter in a regime without phase coherence but finite pairing amplitude. The latter vanishes near to the critical temperature and has no evident link with the pseudogap observed by Angle Resolved Photoelectron Spectroscopy (ARPES).Comment: 7 pages, 5 Figure

    Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface

    Full text link
    We investigate the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The parallel detection of the surface states below and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO) spitting. These strong deviations from the Rashba-like coupling cannot be treated in kp\textbf{k}\cdot \textbf{p} perturbation theory. Instead, first principle calculations could accurately reproduce the experimental dispersion of the electronic states. Our analysis shows that the giant anisotropy of the SO splitting is due to a large out-of plane buckling of the spin and orbital texture.Comment: 5 pages, 4 figure

    Surface effects on the Mott-Hubbard transition in archetypal V2_2O3_3

    Full text link
    We present an experimental and theoretical study exploring surface effects on the evolution of the metal-insulator transition in the model Mott-Hubbard compound Cr-doped V2_2O3_3. We find a microscopic domain formation that is clearly affected by the surface crystallographic orientation. Using scanning photoelectron microscopy and X-ray diffraction, we find that surface defects act as nucleation centers for the formation of domains at the temperature-induced isostructural transition and favor the formation of microscopic metallic regions. A density functional theory plus dynamical mean field theory study of different surface terminations shows that the surface reconstruction with excess vanadyl cations leads to doped, and hence more metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure

    Ultrafast filling of an electronic pseudogap in an incommensurate crystal

    Full text link
    We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate distortion. Nonetheless, the spectra display a temperature dependent pseudogap instead of quasiparticles crossing. The sudden photoexcitation at 50 K induces a partial filling of the electronic pseudogap within less than 80 fs. The electronic energy flows into the lattice modes on a comparable timescale. We attribute this surprisingly short timescale to a very strong electron-phonon coupling to the incommensurate distortion. This result sheds light on the electronic localization arising in aperiodic structures and quasicrystals

    NLCMAP: A FRAMEWORK FOR THE EFFICIENT MAPPING OF NON-LINEAR CONVOLUTIONAL NEURAL NETWORKS ON FPGA ACCELERATORS

    Get PDF
    This paper introduces NLCMap, a framework for the mapping space exploration targeting Non-Linear Convolutional Networks (NLCNs). NLCNs [1] are a novel neural network model that improves performances in certain computer vision applications by introducing a non-linearity in the weights computation. NLCNs are more challenging to efficiently map onto hardware accelerators if compared to traditional Convolutional Neural Networks (CNNs), due to data dependencies and additional computations. To this aim, we propose NLCMap, a framework that, given an NLC layer and a generic hardware accelerator with a certain on-chip memory budget, finds the optimal mapping that minimizes the accesses to the off-chip memory, which are often the critical aspect in CNNs acceleration
    corecore