851 research outputs found

    The Saharan heat low and moisture transport pathways in the central Sahara-multiaircraft observations and Africa-LAM evaluation

    Get PDF
    We present a characterization of the Saharan heat low (SHL) based on dropsonde observations made on 22 June 2011 by two simultaneously flying aircraft during the Fennec project. The observations are used to identify moisture transport pathways and to validate the UK Met Office limited area model for northern Africa (Africa-LAM). The observations capture the SHL, harmattan, and monsoon surge. The SHL has a northeast-southwest orientated elongated shape centered over northern Mauritania. The SHL core is associated with a 950 hPa temperature minimum (36.4°C) in the morning caused by the monsoon surge and a maximum (42.6°C) in the afternoon. The monsoon surge east of the SHL core splits into two transport pathways: (a) curving around the SHL core in the north, especially pronounced in a morning near-surface layer, and (b) northeastward transport within the ~2km deep monsoon surge (afternoon observations only). In the morning the model forecasts the harmattan, monsoon surge, and the SHL geographic location and northeast-southwest orientation well but the model represents the SHL flatter and more spatially extended and overestimates the convective boundary layer (CBL) by up to ~0.3 km. The simulated afternoon SHL location appears shifted westward by up to ~1°. The model overestimates the shallow afternoon monsoon surge CBL depth of ~1.8km by >2kmresulting in southwestward transport of vertically mixed moisture above ~2.5km contrasting observed northeastward-only transport at lower levels. This moisture distribution model error is likely to have consequences for simulations of Saharan thermodynamics and dust emissions caused by convection-driven cold pools

    The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer

    Get PDF
    The turbulent structure and growth of the remote Saharan atmospheric boundary layer (ABL) is described with in situ radiosonde and aircraft measurements and a large-eddy simulation model. A month of radiosonde data from June 2011 provides a mean profile of the midday Saharan ABL, which is characterized by a well-mixed convective boundary layer, capped by a small temperature inversion (<1K) and a deep, near-neutral residual layer. The boundary layer depth varies by up to 100% over horizontal distances of a few kilometers due to turbulent processes alone. The distinctive vertical structure also leads to unique boundary layer processes, such as detrainment of the warmest plumes across the weak temperature inversion, which slows down the warming and growth of the convective boundary layer. As the boundary layer grows, overshooting plumes can also entrain freetropospheric air into the residual layer, forming a second entrainment zone that acts to maintain the inversion above the convective boundary layer, thus slowing down boundary layer growth further.Asingle-column model is unable to accurately reproduce the evolution of the Saharan boundary layer, highlighting the difficulty of representing such processes in large-scale models. These boundary layer processes are special to the Sahara, and possibly hot, dry, desert environments in general, and have implications for the large-scale structure of the Saharan heat low. The growth of the boundary layer influences the vertical redistribution of moisture and dust, and the spatial coverage and duration of clouds, with large-scale dynamical and radiative implications

    Cross Saharan transport of water vapour via recycled cold-pool outflows from moist convection

    Get PDF
    Very sparse data has previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively-driven water vapour transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day’s convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmospher

    Group and individual analyses of pre-, peri-, and post-movement related alpha and beta oscillations during a single continuous monitoring task

    Get PDF
    Band power linked to lower and upper alpha (i.e. 8-10Hz; 10-12Hz) and lower and upper beta (i.e. 12-20Hz; 20-30Hz) were examined during response related stages, including anticipation, response execution (RE), response inhibition (RI) and post response recovery (PRR). Group and individual data from 34 participants were considered. The participant’s objective was to press a response key immediately following 4 non-repeating, single integer odd digits. These were presented amongst a continuous stream of digits and Xs. Electroencephalogram (EEG) signals were recorded from 32 electrodes (pooled to 12 regions). In the group analyses, participant EEG response was compared to baseline revealing that upper alpha desynchronised during anticipation, RE and RI; lower beta during anticipation and RE; and upper beta just RE. Upper alpha desynchronisation during rapid, unplanned RI is novel. Also, upper alpha and lower/upper beta synchronised during PRR. For upper alpha, we speculate this indexes brief cortical deactivation; for beta we propose this indexes response set maintenance. Lastly, lower alpha fluctuations correlated negatively with RT, indexing neural efficiency. Individual analyses involved calculation of the proportion of individuals displaying the typical RE and PRR trends; these were not reflected by all participants. The former was displayed individually by the largest proportion in upper alpha recorded left fronto-centrally; the latter was most reliably displayed individually in lower beta recorded mid centro-parietally. Therefore, group analyses identified typical alpha and beta synchronisation/ desynchronisation trends, whilst individual analyses identified their degree of representation in single participants. Attention is drawn to the clinical relevance of this issue
    corecore