24 research outputs found

    High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection

    Get PDF
    Mannose-binding lectin (MBL) targets diverse microorganisms for phagocytosis and complement-mediated lysis by binding specific surface glycans. Although recombinant human MBL (rhMBL) trials have focused on reconstitution therapy, safety studies have identified no barriers to its use at higher levels. Ebola viruses cause fatal hemorrhagic fevers for which no treatment exists and that are feared as potential biothreat agents. We found that mice whose rhMBL serum concentrations were increased ≥7-fold above average human levels survived otherwise fatal Ebola virus infections and became immune to virus rechallenge. Because Ebola glycoproteins potentially model other glycosylated viruses, rhMBL may offer a novel broad-spectrum antiviral approach

    Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury

    Get PDF
    Ischemia, lack of blood flow, and reperfusion, return of blood flow, is a common phenomenon affecting millions of Americans each year. Roughly 30,000 Americans per year experience intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous studies of the intestine established a role for neutrophils, eicosanoids, the complement system and naturally occurring antibodies in IR-induced pathology. Furthermore, data indicate involvement of a lipid or lipid-like moiety in mediating IR-induced damage. It has been proposed that exposure of neo-antigens are recognized by antibodies, triggering action of the complement cascade. While it is evident that the pathophysiology of IR-induced injury is complex and multi-factorial, we focus this review on the involvement of eicosanoids, phospholipids and neo-antigens in the early pathogenesis. Lipid changes occurring in response to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 1 will be discussed

    Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

    Get PDF
    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes

    MBL mediates HIV-EBOV GP infection via the canonical macropinocytosis pathway for EBOV but with less dependence on actin.

    No full text
    <p>We preincubated HEK293F cells with (A) EIPA (5-(<i>N</i>-Ethyl-<i>N</i>-isopropyl)amiloride, a potent and specific inhibitor of Na<sup>+</sup>/H<sup>+</sup> exchanger activity), (B) methyl-β-cyclodextrin (extracts or sequesters cholesterol from the plasma membrane), (C) latrunculin B (blocks actin polymerization), (D) cytochalasin D (inhibits actin microfilament function), (E) nocodazole (disrupts microtubules), or (F) jasplakinolide (disrupts microtubules) in 5% MBL-deficient serum in the absence or presence of rhMBL at 37°C for 1 hour. We then infected cells with HIV-EBOV-GP virion-like particles (1200 pg p24/100 µl). Percentages of infected cells are relative to DMSO controls. Luciferase values were adjusted for cell viability. Experiments were performed twice in quadruplicate. Significant differences are shown. (G) Absorbance values of an ELISA assay are shown indicating the difference in amount of rhMBL within the physiological range that binds to immobilized mannan or FITC-dextran (1 µg/100 µl). (H) We preincubated FITC-dextran with various concentrations of rhMBL at 37°C for 30 minutes and then added the products to PMA-stimulated (10 ng/ml), IL-4-supplemented (100 ng/ml) THP-1 cells at 37°C for 1 hour. We measured FITC-dextran uptake by flow cytometry and reported the results as mean fluorescence intensity (geometric mean fluorescence × percentage of cells). Experiments were performed twice in triplicate.</p
    corecore